

 Document name: Relevant DNSSEC Concepts and Basic Building
Blocks

Page: 1 of 63

Dissemination: PU Version: Version 1.0 Status: Final

D2.7
Relevant DNSSEC Concepts and Basic Building Blocks

This document is issued within the frame and for the purpose of the LIGHTest project. LIGHTest has received funding from the
European Union’s Horizon 2020 research and innovation programme under G.A. No 700321.

This document and its content are the property of the Lightest Consortium. All rights relevant to this document are determined
by the applicable laws. Access to this document does not grant any right or license on the document or its contents. This
document or its contents are not to be used or treated in any manner inconsistent with the rights or interests of the Lightest
Consortium or the Partners detriment and are not to be disclosed externally without prior written consent from the Lightest
Partners.

Each Lightest Partner may use this document in conformity with the Lightest Consortium Grant Agreement provisions.

Document Identification

Date 31.08.2017

Status Final

Version Version 1.0

Related WP WP 2 Related Deliverable(s) none

Lead Authors Martin Hoffmann Dissemination Level PU

Lead Participants NLNET Contributors FHG, ATOS, TUG

Reviewers G+D, DTU

Relevant DNSSEC Concepts and
Basic Building Blocks

Document name: Relevant DNSSEC Concepts and Basic Building
Blocks

Page: 2 of 63

Dissemination: PU Version: Version 1.0 Status: Final

1. Executive Summary

The trust infrastructure developed by the LIGHTest project makes use of the existing global
Domain Name Service (DNS) for discovering information relevant for validation of trust. As a
distributed database both in terms of organization of data as well as responsibility for
operation and management, the DNS is very suitable for an infrastructure that aims to
support integration and interoperation of various trust schemes

The original design of the DNS did not consider a number of attacks allowing miscreants to
alter information retrieved via the DNS. The Domain Name Service Security Extensions
(DNSSEC) have been developed to mitigate this problem. They allow users of the DNS to
verify that the data they received is indeed the data intended. This ability for verification is
vital for use of DNS in the context of a trust infrastructure.

Within the infrastructure, the DNS can be used for two specific tasks: verification of identity
and retrieval of trust related data.

When communicating with a network resource or retrieving remote documents, certificates
are used to prove the identity of the resource or authenticity of the document. The DANE
protocol associates these identities with domain names and stores information under this
domain name that can be used to limit the certificates allowed to be used with the identity.
The concepts from DANE can be used in the LIGHTest architecture to limit the certificates in
use by a trust scheme both as issuer certificates as well as for signing trust related
information such as trust lists. Some new procedures need to be developed to apply the
concepts to these specific use cases.

In order to verify trust, however, additional information needs to be queried, such as rules
describing trust association, trust translation, and trust delegation. As such rule sets can
become rather large, the DNS isn’t suited for storing them. Instead, pointers should be stored
that direct interested parties to retrieve this information using other, more appropriate
protocols such as HTTP. These protocols will also allow limiting access based on
authentication, whereas DNS’s data is available publicly.

Such pointers are best provided in the form of URIs. Two DNS extensions are currently
defined for storing URIs for a given domain name: the Dynamic Delegation Discovery
System (DDDS), an extensive system for translating application-defined strings into URIs
using the DNS as a database, and a much simpler concept that simply stores URIs for a
given domain name. Use of either would require the definition of some usage rules as part of
the LIGHTest project.

When implementing the resulting architecture as part of the project’s pilots, various software
may be necessary. There are three categories: DNS server software that operates as part of
the global DNS system, DNS provisioning libraries and tools that can be used to manage the
data to be stored as part of the LIGHTest project, and DNS libraries for querying the DNS as
part of trust verification.

Relevant DNSSEC Concepts and
Basic Building Blocks

Document name: Relevant DNSSEC Concepts and Basic Building
Blocks

Page: 3 of 63

Dissemination: PU Version: Version 1.0 Status: Final

2. Document Information

2.1 Contributors
Name Partner
Jaap Akkerhuis NLNET
Rasmus Birkedal DTU
Martin Hoffmann NLNET
Frank-Michael Kamm G&D
Stefan More TUG
Olamide Omolola TUG
Javier Presa Cordero ATOS
George Thessalonikefs NLNET
Miryam Villegas Jimenez ATOS
Georg Wagner TUG
Sven Wagner USTUTT
Heiko Roßnagel FHG
Wouter Wijngaards NLNET

2.2 History
Version Date Author Changes
0.1 13.07.2017 NLNET Initial draft.
0.9 31.07.2017 NLNET Final draft.
1.0 26.08.2017 NLNET Final version.

Relevant DNSSEC Concepts and
Basic Building Blocks

Document name: Relevant DNSSEC Concepts and Basic Building
Blocks

Page: 4 of 63

Dissemination: PU Version: Version 1.0 Status: Final

3. Table of Contents

1. Executive Summary 2

2. Document Information 3
2.1 Contributors ... 3
2.2 History ... 3

3. Table of Contents 4
3.1 Table of Figures ... 6
3.2 Table of Tables .. 6
3.3 Table of Acronyms ... 6

4. Scope 8

5. Introduction to the DNS 9
5.1 Questions and Answers ... 9
5.2 Domain Names .. 11
5.3 Distributed Authority .. 13
5.4 The Root Zone, TLDs, Registries and Registrars ... 15
5.5 Operation of the DNS... 16
5.6 Management of Zone Data .. 18
5.7 Querying the DNS .. 20
5.8 Down to the Wire ... 21
5.9 Message Size Limits .. 24
5.10 Extending DNS .. 25

6. DNSSEC 27
6.1 Threats to DNS .. 27
6.1.1 Man or Monkey in the Middle (MITM) Attacks .. 27
6.1.2 DNS Spoofing .. 27
6.1.3 Cache poisoning .. 28
6.1.4 Name Chaining .. 28
6.1.5 Hijacking .. 28
6.1.6 Denial of Service (DoS) .. 29
6.1.7 Distributed Denial of Service (DDoS) ... 29
6.1.8 Denial of Existence .. 30
6.2 Digital Signatures for DNS Records ... 30
6.3 A Chain of Keys ... 31
6.4 Operating DNSSEC-aware Zones ... 34
6.5 Verifying DNS Records .. 34
6.6 Limits of DNSSEC ... 35

7. Verifying Identity with DNS 37
7.1 The System of Certificate Authorities ... 37
7.2 Storing Certificates in DNS .. 38
7.3 DANE .. 38
7.3.1 TLSA .. 39
7.3.2 SMIMEA... 41
7.4 Options for LIGHTest ... 41

Relevant DNSSEC Concepts and
Basic Building Blocks

Document name: Relevant DNSSEC Concepts and Basic Building
Blocks

Page: 5 of 63

Dissemination: PU Version: Version 1.0 Status: Final

8. Indicating Resource Locations 43
8.1 Uniform Resource Identifiers.. 43
8.2 NAPTR and DDDS .. 44
8.3 The URI Resource Record ... 46
8.4 Options for LIGHTest ... 46

9. DNS Software 48
9.1 Server Software ... 48
9.2 DNS update libraries .. 53
9.3 Verifying resolver libraries .. 56
9.4 Options for LIGHTest ... 58

10. Conclusion and Outlook 59

11. References 60

12. Project Description 62

Relevant DNSSEC Concepts and
Basic Building Blocks

Document name: Relevant DNSSEC Concepts and Basic Building
Blocks

Page: 6 of 63

Dissemination: PU Version: Version 1.0 Status: Final

3.1 Table of Figures
Figure 1. An excerpt from the domain name space. .. 12
Figure 2. Delegation from the root zone to ‹com› and ‹example.com› .. 15
Figure 3. Delegation from ‹com› to ‹example.com› with DNSSEC ... 33

3.2 Table of Tables
Table 1: Market overview DNS Server Software ... 51
Table 2: Market overview DNS update libraries ... 54
Table 3: : Market overview DNS Client Software .. 57

3.3 Table of Acronyms
API Application Programming Interface

ASCII American Standard Code for Information Exchange

AXFR Authoritative Zone Transfer

CA Certificate Authority

ccTLD Country-code Top Level Domain

DANE DNS-based Authentication of Name Entities

DDDS Dynamic Delegation Discovery System

DDoS Distributed Denial of Service

DHCP Dynamic Host Configuration Protocol

DNS Domain Name System

DNSSEC Domain Name System Security Extensions

DoS Denial of Service

DS Delegation Signer

DTLS Datagram Transport Layer Security

ENUM E.164 Number Mapping

gTLD Generic Top Level Domain

HTTP Hypertext Transfer Protocol

IANA Internet Assigned Numbers Authority

ICANN Internet Corporation for Assigned Names and Numbers

Relevant DNSSEC Concepts and
Basic Building Blocks

Document name: Relevant DNSSEC Concepts and Basic Building
Blocks

Page: 7 of 63

Dissemination: PU Version: Version 1.0 Status: Final

IDN Internationalized Domain Names

IETF Internet Engineering Task Force

ISO International Organization for Standardization

ITU International Telecommunication Union

ITU-T ITU Telecommunication Standardization Sector

IXFR Incremental Zone Transfer

KSK Key Signing Key

PKIX Public Key Infrastructure (X.509)

RFC Request for Comments

RR Resource Record

RRset Resource Record Set

SOA Start of Authority

SRV Service Resource Record

TCP Transmission Control Protocol

TLD Top Level Domain

TLS Transport Layer Security

TTL Time to Live

UDP User Datagram Protocol

URI Uniform Resource Identifier

WG Working Group

ZSK Zone Signing Key

Relevant DNSSEC Concepts and
Basic Building Blocks

Document name: Relevant DNSSEC Concepts and Basic Building
Blocks

Page: 8 of 63

Dissemination: PU Version: Version 1.0 Status: Final

4. Scope

This deliverable D2.7 provides an extensive look into the Domain Name System itself,
extensions necessary for solving the goals of LIGHTest, as well as the available DNS
software. As such, it provides necessary input for the design work carried out in the tasks
3.2, 4.2, and 5.2 that design DNS-based publication of trust schemes, trust translation, and
trust delegation, respectively.

The deliverable starts with an introduction to the Domain Name System in chapter 5,
introducing its history and goals, the structure of the data stored, how the DNS is operated,
and how the data is arranged and managed. The chapter introduces the concept of the
hierarchical domain names and zones for managing operationally connected data. It explains
how the DNS is queried both in principle and how this translates to the actual wire protocol.

DNSSEC, the security extensions to DNS, are the matter of chapter 6. After discussing the
threats that DNSSEC is attempting to solve, the chapter dives into the concepts and
protocols underlying DNSSEC: digitally signing the data with keys associated with zones and
the use of the hierarchical structure of the zones for key verification. A discussion follows of
the changes necessary to both operating the components of the DNS infrastructure as well
as how queries are being made to verify authenticity of DNS data. As this verification is
important if a trust infrastructure is to be based on DNS, a look at the limitations of DNSSEC
concludes the chapter.

The following two chapters look at the specific use cases that LIGHTest has for DNS:
verification of identity and discovery of resource locations. Each chapter discusses the
problem at hand, existing options, and makes suggestions for the LIGHTest architecture.

Finally, chapter 9 looks at the software related to DNS. It presents a market overview for
software of three categories: DNS server software that can be used as part of the global
DNS infrastructure, client libraries and tools that can be used for implementing components
that update and manage DNS data, and client libraries that perform DNS queries as part of a
trust verifier. For each of these categories, the chapter presents possible choices for use in
the LIGHTest reference implementation and pilots.

Relevant DNSSEC Concepts and
Basic Building Blocks

Document name: Relevant DNSSEC Concepts and Basic Building
Blocks

Page: 9 of 63

Dissemination: PU Version: Version 1.0 Status: Final

5. Introduction to the DNS

In its early days, Arpanet, the research network that would eventually evolve into today’s
Internet, was small enough that each node could maintain a database giving human-
readable names to all the nodes it would need to communicate with. Over time, this
database, a simple text file named HOSTS.TXT, became centrally maintained. Each node
would retrieve updated versions as they became available. With the network growing quickly,
however, the file became large, making updates expensive and slow. On the other hand,
dealing with the constant flow of requests for new names and updates developed into an
administrative nightmare.

As a response, Paul Mockapetris devised the Domain Name System, or DNS for short. Its
initial specification was published via the Internet Engineering Task Force as a pair of
documents, RFC 882 [1] and RFC 883 [2], in November 1983. The system provides a
network service that deals with the administrative issues of a central registry by eliminating it.
Instead, the system mirrors the distributed nature of the Internet as a network of
interconnected networks. It allows each participating network to set up, configure, and
operate their own name resolution service and provides means for discovering and query
these independent services.

Implementation and operation experience led to an updated specification in November 1987
as RFC 1034 [3] and RFC 1035 [4]. While there have been many updates and extensions,
these two documents still provide the core specification for the DNS thirty years later.

This chapter introduces this core specification, how the Domain Name System works, and
achieves its goal.

5.1 Questions and Answers
The initial intention of the name system was to give human-readable (and memorable)
names to network hosts that are internally identified using numeric addresses. However, it
quickly became apparent that users often aren’t interested in communicating with specific
hosts but rather like to peruse certain services. For instance, one of the most important
applications of the early Internet was electronic mail. When sending an e-mail message, a
user doesn’t really care to which physical host the message is ultimately delivered so long as
it eventually reaches the intended person. Here, the name doesn’t necessarily identify a
specific host but rather the recipient’s mail system. It isn’t a host name anymore but becomes
a more abstract identifier. It becomes a domain name.

Whether the domain name identifies a host or a mail system depends on the context it is
used in. When sending data packets out into the network, the name represents a physical
host. When sending an e-mail message, the same name suddenly represents a mail system.
Each of these cases requires different information to actually use the name – there are
different questions to be answered.

As an example, let’s assume we want to send an e-mail message to ‹alice@example.com›.
The mail system responsible for messages sent to this address is named by the portion to

Relevant DNSSEC Concepts and
Basic Building Blocks

Document name: Relevant DNSSEC Concepts and Basic Building
Blocks

Page: 10 of 63

Dissemination: PU Version: Version 1.0 Status: Final

the right of the at-sign. As a first step, we need to ask the DNS for the physical hosts serving
this mail system. The domain name we ask for is ‹example.com›. The kind of information
asked for is stated through the question type (often abbreviated to qtype). Internally, this is a
16-bit integer value with each kind of information having been assigned its own value. Each
of these well-known values has a short mnemonic assigned. The type for the information
‘Which hosts are responsible for an e-mail domain?’ is 15 with the mnemonic MX for ‘mail
exchange.’

In the commonly used formal notation, the question is written like this:

example.com. IN MX

The first item is the domain name to query for, the question type is last. What is the IN in the
middle, though? At the time when DNS was designed, other networks were being developed.
It seemed prudent to let DNS being used for these networks as well. However, other
networks have different address semantics and provide services in a different way making it
necessary to allow for different semantics when translating names. An additional field called
the class was included in questions and answers to allow addressing the type of network. As
it happened, no other network picked up DNS. As a result, the only value for the class field
today is the one reserved for the Internet with value 1 and mnemonic IN.1 This mnemonic will
appear in many of the following examples and, for the most part, can be safely ignored.

The resource records that answer this question have a type, too, now called the record type.
Despite the different name, it is the exact same value. Using the same formal notation, the
answer might look like this:

example.com. 86400 IN MX 10 alcor.example.com.
example.com. 86400 IN MX 15 capella.example.com.
example.com. 86400 IN MX 15 deneb.example.com.

There are three resource records in the answer. The domain name, class, and record type
are easily identified. The domain name is called the owner of the record since it specifies
which name the record belongs to. The name is followed by a number called the time to live
or TTL. It states how many seconds the record should be considered valid after being
received. Thus, all three records in this answer can be reused for a day – if another e-mail
message were to be sent to someone at ‹example.com› within a day, this answer can be
used directly without asking the DNS again.

The remainder is the record data. The format and meaning of the record data depend on the
record type. Internally, they follow a binary encoding; the text given above is merely a textual
representation of the binary data for easier use.

1 Some DNS server software uses the value originally registered for Chaosnet, a network research
project at MIT, for querying internal status of the server. This, however, has never been
standardized.

Relevant DNSSEC Concepts and
Basic Building Blocks

Document name: Relevant DNSSEC Concepts and Basic Building
Blocks

Page: 11 of 63

Dissemination: PU Version: Version 1.0 Status: Final

For the MX record type, the data of each record consists of a priority value and the domain
name of a host providing mail services for the owner. The priority value allows giving
preferred hosts – hosts with a smaller priority are preferred. In the example, all mail should
first be delivered to a host named ‹alcor.example.com› with the two other hosts serving as
fallbacks for when Alcor fails.

Connecting to ‹alcor.example.com› for delivering the e-mail message requires its address.
This requires a different question type, an address or A question:

alcor.example.com. IN A

The answer to this question should be an IPv4 address:

alcor.example.com. 86400 IN A 192.0.2.81

Being good citizens, we want to use IPv6, though. This is a yet another question, AAAA –
pronounced ‘quad A’ and chosen because an IPv6 address is exactly four times the size of
an IPv4 address.2

alcor.example.com. IN AAAA

The DNS has an answer for this question, too:

alcor.example.com. 86400 IN AAAA 2001:0DB8::81

With this information, we can finally start delivering the message to Alice.

5.2 Domain Names
As the Internet started to grow from a few timeshared computers into a complex
interconnected network of workstations, the idea of a hierarchical naming scheme for hosts
emerged. Instead of communally agreeing on names for each and every host, each site
would name its own hosts as it saw fit and the community at large only needed to agree on
names for the sites. To identify a host globally, the host’s name needed to be qualified with
the name of the site, more abstractly called the domain of the host. This system was further
refined as the network kept growing. The sites in turn became too large and were split into a
number of sub-sites each controlling its own names. This split was reflected in the name of
the domain: it became a composite of the name of the sub-site and the site. Additional splits
would increase the components in this composite.

As a result, the name space created by these names has a hierarchical structure. More
specifically, the structure is a tree: the sites are child nodes of the tree’s root, the sub-sites
are child nodes of their parent (sub-) sites, and the hosts are child nodes of their (sub-) sites.

Each node in this tree carries a designator called a label. The domain name of the node is
this label prepended to the domain name of its parent node, separated with a dot. Since the

2 A bit of network engineer humor, there.

Relevant DNSSEC Concepts and
Basic Building Blocks

Document name: Relevant DNSSEC Concepts and Basic Building
Blocks

Page: 12 of 63

Dissemination: PU Version: Version 1.0 Status: Final

domain name of the parent node in turn is a combination of that node’s label and parent
node’s domain name, the domain name results in the sequence of the labels along the way
from the node to the tree root.

To pick up the example from above, the domain name of the host ‹alcor.example.com›
designates the node labeled ‹alcor› under ‹example.com› which in turn is a node labeled
‹example› under a node labeled ‹com› which, finally, is a direct descendant of the root node.
Figure 1 shows how the name traces through the tree.

Figure 1. An excerpt from the domain name space. For each node, its label is shown.
The domain name ‹alcor.example.com› is formed by following the marked path from
the bottom up, concatenating the labels of each node with a dot.

Apart from looking familiar to anyone accustomed to how people are named in Western
culture, this bottom-up scheme has the advantage that the root node is the last node in each
and every (complete) domain name. If it is given a unique label, this label becomes a natural
end-of-name marker making it unnecessary to invent an explicit marker or store the length of
the name. And indeed, in DNS the root node is the only one that has an empty label.

All other labels are a strings of up to 63 bytes. The ASCII character set is used to interpret
the individual bytes. This is important, since labels are case-insensitive. That is, ‹alcor›,
‹Alcor›, and ‹ALCOR› are all the same label. However, since ASCII only defines byte values
up to 127, all values greater than that are quietly left without an interpretation.

Atop this very generous specification exist a convention that limits the characters allowed in
the labels that are part of domain names that designate hosts. Here, only letters, digits, and
hyphens are allowed with the further restriction that the label must start with a letter and not
end with a hyphen. As the vast majority of labels are indeed used for form host names, this
rule has become the de-facto standard.

In fact, when it was decided that DNS should be able to express names in more than just
languages using the basic Latin alphabet encoded by ASCII, a method was devised to

alcor capella deneb

examplesri lightest europa ietf

com orgeu

.

.

.

Relevant DNSSEC Concepts and
Basic Building Blocks

Document name: Relevant DNSSEC Concepts and Basic Building
Blocks

Page: 13 of 63

Dissemination: PU Version: Version 1.0 Status: Final

encode the full range of Unicode using only the byte values allowed for host names. This
method, called ‘punycode,’ forms the basis of Internationalized Domain Names or IDNs.

5.3 Distributed Authority
As mentioned, one important goal for the design of the DNS was to avoid a central registry in
control of all names and resource records and allow participants in the network to
independently administer their data. This meant that there needed to be a way to discover
who a certain name belonged to and, DNS being a network service, where that operator
would serve the data from.

Given the potentially vast size of the domain name space, it wasn’t practical to store
ownership with each domain name. Instead, DNS provides the means to cut the name space
into contiguous regions of nodes that are all under the same ownership. These regions are
called zones. The resource records owned by all the names in a zone are controlled by the
zone and are served by the same set of servers. The zone is said to be authoritative for the
domain names that are part of the zone. The servers that can be queried to deliver the
resource records owned by these names are authoritative name servers (often shortened to
just name server when there is no ambiguity).

Because in a tree all contiguous regions are themselves trees, the zones are trees under a
top-most node called the zone’s apex. This node is reachable from all other nodes of the
zone by simply walking upwards. Additionally, it is the first node of a zone encountered when
traversing from the DNS root. It therefore makes sense to store all necessary administrative
information with this apex.

The node just above the apex is part of a different zone. Control needs to be transferred from
one zone to another between those two nodes. This is called a zone cut and happens by
mirroring some of the information of the apex node of the descendant zone with the parent
zone. Thus, the servers responsible for the parent zone have knowledge that the apex node
of the child zone exists and can provide all those records for this apex node that are required
to discover the child zone properly.

These records are called delegation records since they delegate control. Classic DNS
requires only one type of delegation records: NS (or Name Server) records. Each of these
records gives the domain name for one host operating a name server authoritative for the
zone.

For ‹example.com›, the apex of the zone from the example above, the NS records could look
like this:3

example.com. 86400 IN NS nsa.example.com.
example.com. 86400 IN NS nsb.example.com.

3 Since ‹example.com› is a real zone, the actual records are different, reflecting the real operator of
the zone. It has been reserved for use in examples and documentation and is operated by IANA.
Liberty has been taken to use different records here that better serve the narrative.

Relevant DNSSEC Concepts and
Basic Building Blocks

Document name: Relevant DNSSEC Concepts and Basic Building
Blocks

Page: 14 of 63

Dissemination: PU Version: Version 1.0 Status: Final

Here, the hosts named ‹nsa.example.com› and ‹nsb.example.com› are the two authoritative
name servers for the zone.

Which creates a conundrum. The name servers to be used for discovering all domain names
within the zone ‹example.com› are accessible using a domain name that is part of that very
zone. That can’t work and yet it is a very common scenario. After all, the zone is supposed to
represent whoever operates that zone.

This is why in addition to delegation records, the parent zone can also store a number of glue
records, resource records for different domain names returned included in the response to
cut the Gordian knot.

To complete the example, the servers for ‹com› (which is the parent zone of ‹example.com›),
need to also deliver the address records for the two name servers when asked for the zone’s
NS records:

nsa.example.com. 86400 IN A 192.0.2.88
nsa.example.com. 86400 IN AAAA 2001:0DB8::12
nsb.example.com. 86400 IN AAAA 2001:0DB8::13

Figure 2 traces delegation from the root zone to ‹example.com› by showing all the relevant
resource records and how they tie together.

Relevant DNSSEC Concepts and
Basic Building Blocks

Document name: Relevant DNSSEC Concepts and Basic Building
Blocks

Page: 15 of 63

Dissemination: PU Version: Version 1.0 Status: Final

Figure 2. Delegation from the root zone to ‹com› and ‹example.com› showing the
relevant authoritative, delegation and glue records for each of the three zones.

5.4 The Root Zone, TLDs, Registries and Registrars
Using the process of delegation, each zone effectively gains its legitimacy through an action
of its parent zone, which authorizes the sub-zone by publishing the NS records pointing to it.
This recursive process ends at the top with a zone that has the root node as its apex – the
root zone. Which means that the policies governing the root zone influence the form of all
names used on the Internet.

Because of this, the authoritative part of the root zone is extremely small: it consists of the
root node only. It delegates to a set of child nodes called the top-level domains (or TLDs).
Initially, this set was relatively small: six general purpose names for different kinds of
organizations – ‹gov› for governmental, ‹edu› for educational, ‹com› for commercial, ‹mil› for
military, ‹net› for network-related, and ‹org› for other organizations – plus one TLD for each
of the two-letter country codes defined by ISO. In addition, the ‹arpa› domain was initially
introduced as a temporary TLD into which all the existing host names from the flat era were

a.gtld-servers.net.NS a.gtld-servers.net.NS

nsb.example.com.NS

com.

nsa.example.com.NS

nsa.example.com. A 192.0.2.88

nsb.example.com. AAAA 2001:0DB8::13

example.com. nsa.example.com.NS

a.gtld-servers.net.NS

com. …SOA

…

…

alcor.example.com.MX alcor.example.com.MX

example.com.

nsa.example.com. A 192.0.2.88

nsb.example.com.

example.com. …SOA

nsb.example.com.NS nsa.example.com.NS nsa.example.com.NS

alcor.example.com.MX

alcor.example.com. A 192.0.2.81

…

a.root-servers.net.NS a.root-servers.net.NS

. (Root Zone)

a.gtld-server.net. A 192.5.6.30

AAAA 2001:503:a83e::2:30

com.

a.root-servers.net.NS

. …SOA

…

…

a.gtld-servers.net.NS a.gtld-servers.net.NS a.gtld-servers.net.NS

Ⓓ

Ⓖ

Ⓐ

Ⓓ

Ⓖ

Ⓐ

Ⓖ

Ⓐ

Ⓓ

AAAA 2001:0DB8::12

AAAA 2001:0DB8::13

AAAA 2001:0DB8::12

Relevant DNSSEC Concepts and
Basic Building Blocks

Document name: Relevant DNSSEC Concepts and Basic Building
Blocks

Page: 16 of 63

Dissemination: PU Version: Version 1.0 Status: Final

placed. It is also used for names that have special meaning within DNS. For instance, when
looking up the host name assigned to an IP address, a domain name under ‹arpa› is
generated for the IP address. In 1988, ‹int› was added for international organizations. [5] The
explosive growth of the Internet during the late 1990s resulted in several attempts to add
additional, more topical TLDs. As a first result, seven such TLDs were added between 2001
and 2004. Finally, in 2008 the New Top-level Domains Program opened the name space up
by provided a process for requesting and operating additional TLDs.

Together with IP address allocation and allocation of names and numbers for Internet
protocols, control of the root zone and consequently the TLDs comprises something called
the IANA function, where IANA stands for Internet Assigned Numbers Authority. IANA
formed more or less spontaneously when the need for such a function arose. It was initially
performed by Jon Postel and Joyce K. Reynolds and, once it became a little more
formalized, funded by the US government. It was transferred to a new, private organization,
the Internet Corporation for Assigned Names and Numbers, ICANN, in late 1998 but
remained under US oversight. After much discussion, the function was finally transferred into
the control of an international community in 2016.

Most top-level domains are operated by their own organizations upon an agreement with
ICANN. These organizations are called registries. They can have their own policies
restricting who can apply for a second-level domain with them. For the two-letter country
code top-level domains (ccTLDs), control is transferred to an entity of that country, typically
an organization firmed for that purpose by the country’s ISPs or a government agency. While
some of these TLDs limit applications for a domain name to persons and organizations
residing in the country, others are more open.

The other, non-country domains, often called generic top-level domains or gTLDs, are mostly
operated by commercial entities for profit, with some exceptions for those original TLDs
reserved for the government. Access to second-level domains under a gTLDs can be
restricted or open, depending on policies and intentions for these domains.

While applicants would initially request names directly from the registry, over time many
registries adopted a process whereby applicants would instead use the services of an
intermediary called registrars. These, often commercial entities, would be accredited with
several TLDs, making it easier to register a variety of domain names through a single entity.
Often, these registrars also offer to operate the zones for these domain names on behalf of
their customers, freeing them from the necessity to create and operate the authoritative
name servers for their zones.

5.5 Operation of the DNS
While leaving operation of the name servers to the registrars or some other dedicated DNS
operator is a good solution for relatively simple zones, complex and ever-changing networks
often require to maintain control over the zone’s content. Yet providing the infrastructure for
reliable name resolution – an absolute necessity for any kind of network service – isn’t easily
done.

Relevant DNSSEC Concepts and
Basic Building Blocks

Document name: Relevant DNSSEC Concepts and Basic Building
Blocks

Page: 17 of 63

Dissemination: PU Version: Version 1.0 Status: Final

Much like in the example shown above, zones almost always provide more than one name
server. This will keep the name service available even if one of the servers fails. If the
servers reside in the same location, however, both will become unreachable in case of
network failures either in the location or for part of the network when there is a segmentation.
Thus, the servers should be in different locations, ideally in far away parts of the world.
Another option is to use technologies such as anycast to make multiple servers in different
parts of the world share the same address and have DNS queries routed to the nearest
server.

For anyone not in command of vast resources, operating such a topology all by themselves
is nigh impossible. DNS recognizes this and provides a means to outsource part of the
operation of a zone: the different name servers authoritative for a zone can be operated by
different parties. Means are provided to synchronize the zone data between these servers.

The scenario typically used is to have a single name server which holds the one true copy of
the zone data, called the primary name server or master name server. The maintainer of the
zone updates the data on this server only. All other name servers mentioned in the NS
records function as secondary name servers. They receive their zone data from the primary
via a mechanism called zone transfer.

Whenever zone data changes on the primary server, it will send notifications to all the
secondary servers by way of a special DNS message called a NOTIFY. In response to this
message, the secondary servers fetch the updated zone data from the primary server using
yet another special DNS interaction termed AXFR, a somewhat creative abbreviation for
‘authoritative transfer.’

However, the secondary server shouldn’t just start such a zone transfer on any NOTIFY they
receive. Zones can be big and zone transfer can take a long time. Instead, the secondary
server should be able to check if it perhaps already has the current version of the zone data.
This is one of the reasons why each zone carries a sort of bookkeeping record with its apex
node. This record, called the SOA record for ‘start of authority,’ contains, among other things,
a version number for the zone data in the form of an ever-increasing serial number.

Before a secondary server initiates the AXFR, it first fetches the SOA record and compares it
with the copy it already has. Only if the serial number has increased will it start with the
actual zone transfer.

But as zones become bigger and update more often, full zone transfers become a very
ineffective means of synchronization, even if guarded by the serial number. A companion
mechanism called IXFR for ‘incremental zone transfer’ allows the secondary servers to
request information on changes to the zone data. With this mechanism, the secondary server
tells the primary the serial number of the zone data it has and will receive only those records
that have been added, changed, or deleted.

For this zone synchronization mechanism to work, the primary server needs to know all the
secondary servers so it can send a NOTIFY to them and the secondary servers need to
know which primary server to send their zone transfer requests to. But other than that
information, which needs to be configured into the name servers, no restrictions apply.

Relevant DNSSEC Concepts and
Basic Building Blocks

Document name: Relevant DNSSEC Concepts and Basic Building
Blocks

Page: 18 of 63

Dissemination: PU Version: Version 1.0 Status: Final

Pending an agreement, secondary name servers can be operated by anyone – which makes
their task ideal to be outsourced to dedicated service providers.

But even operating the primary name server isn’t something everyone is comfortable being
responsible for. DNS is often used in distributed denial of service attacks, something that can
overwhelm and cripple a small IT department. This is where a topology called hidden primary
(or hidden master) comes into play. Here, the primary name server doesn’t actually appear in
the NS records of the zone, only the secondary servers are listed. Thus, the primary server
will never receive normal DNS queries from the wider Internet. It only needs to be able to
communicate with the secondary servers and can be secured accordingly.

5.6 Management of Zone Data
The primary server, regardless of whether it is hidden or public, needs to have access to the
data of the zone: all the resource records for nodes that are part of the zone as well as
delegation and glue records. The original specification suggested to use a simple text file for
this format representing each of the records in a standardized format. Since these files
contain the one true version of the zone data, they are called master files by the DNS
specification and zone files in practice.

Their format is essentially the same as in the examples given above. Each line contains one
resource record. It starts with the domain name of the record’s owner. Since all such names
have to be within the zone they end with the domain name of the zone’s apex, called the
origin. To save people a lot of time, the names can be given relative to this origin. If they end
properly in a dot they are complete domain names and if they are not, the origin is appended
to complete them. For instance, to include records for ‹alcor.example.com› as part of the
zone ‹example.com› the domain name stated for these records could either be
‹alcor.example.com.› (note the trailing dot) or just ‹alcor›. If the previous record was for Alcor,
too, the name can also be left out and the line be indented with a least one white-space
character instead.

The domain name is followed by the TTL, the class, and the resource record type. The
former is a number while the latter two are the mnemonics used for class and type. Since
these mnemonics are taken from a single shared name space of only letters, the order of the
three elements doesn’t really matter. However, because TTL and class are optional, the type
always needs to be last. If left out, both are replaced by the last explicitly stated value.

The record type is followed by a textual representation of the record data. This
representation is specified for each record type. Thus, whoever reads the zone file needs to
know of all the record types used in the file and their textual representation.4

As with all formats, there is a number of additional rules for escaping special characters and
violating the One Record Per Line rule for very long records.

4 RFC 3597 [6] extends the master file format to also allow representation of unknown class and
record type values as well as the record data for unknown types.

Relevant DNSSEC Concepts and
Basic Building Blocks

Document name: Relevant DNSSEC Concepts and Basic Building
Blocks

Page: 19 of 63

Dissemination: PU Version: Version 1.0 Status: Final

To illustrate how such a zone file looks in practice, here is a zone file for ‹example.com› as
we have defined it so far:

$ORIGIN example.com.

example.com. 86400 IN SOA (nsa.example.com.
 hostmaster.example.com.
 2017062101
 86400 3600 604800 300)

 86400 NS nsa.example.com.
 NS nsb.example.com.

 86400 MX 10 alcor.example.com.
 MX 15 capella.example.com.
 MX 15 deneb.example.com.

nsa 86400 A 192.0.2.12
 AAAA 2001:0DB8::12
nsb 86400 AAAA 2001:0DB8::13
alcor 86400 A 192.0.2.81
 AAAA 2001:0DB8::81
capella 86400 A 192.0.2.42
 AAAA 2001:0DB8::42
deneb 3600 A 192.0.2.43
 AAAA 2001:0DB8::43

The first line is a control directive and spell’s out the zone’s origin. All the other lines contain
resource records: first, the SOA record and the two NS records necessary for bookkeeping,
followed by three MX records that direct incoming e-mail for ‹example.com›. Finally, there are
address records for five hosts within the domain.

The greatest advantage of using zone files is that virtually all name servers understand and
process it. As simple text files, they can be placed in a version control system or can be
generated programmatically from other data.

However, as zones become more dynamic with content changing more often, managing
these files can become difficult. If zones are managed through APIs – an example would be
dynamic DNS services where customers can update the host address for their machines in
automatically response to it changing – or if they are controlled via configuration
management systems, creating the intermediary zone file format from other data can be
burdensome.

This is why some name servers provide alternative approaches to storing zone data. This
could be a relational database or a directory service. For instance, the DNS name server part
of the Microsoft Windows operating system can use Active Directory for storing zone data.
Since this is used throughout the system for management purposes already, DNS zone
management is thus kept in line with how other parts of the system are controlled.

Relevant DNSSEC Concepts and
Basic Building Blocks

Document name: Relevant DNSSEC Concepts and Basic Building
Blocks

Page: 20 of 63

Dissemination: PU Version: Version 1.0 Status: Final

As an alternative to manipulating the zone files or whatever other database the server uses
directly, a procedure exists to update zone data through means of DNS. This is called DNS
UPDATE after the special type of DNS messages employed for it. [9] In essence, the
changes to be made to the data for a zone – records to be added, removed, or updated – as
well as conditions that must be met in order for the update to be applied are collected into a
DNS message and sent to the primary server. The conditions can be added to make sure
that the manipulation isn’t going to move the zone data into an unexpected state.

On many Unix systems, a command line tool named nsupdate exists that can be used to
construct and send these messages. However, not all authoritative name servers support the
update mechanism, so this isn’t necessarily a portable way of modifying zone data.

5.7 Querying the DNS
The concept of delegation whereby the name servers maintaining the data for a zone can be
discovered only from the parent zones means that someone querying for data potentially
needs to query many name servers to eventually discover those authoritative for the zone
that can deliver an answer. Many of these intermediary queries happen over and over. For
instance, the root zone’s servers need to be asked for the name servers for the ‹com› zone
every time someone browses to a domain in this extremely popular TLD. Since these records
change very rarely, they can be cached instead of being requested time and again.
Moreover, as many systems in a local network will ask for records in the same zone – for
instance, everyone is using the most popular search engine all the time –, it makes sense to
provide this cache for the entire local network.

Such a cache is best provided in a transparent manner: Instead of being explicitly queried
and filled by the local users, a better procedure is to proxy all DNS queries through this
cache. If it already knows the answer, it can return it immediately. If it doesn’t, it can retrieve
the records from the wider Internet and both return and store them in the cache for later
reuse.

This has an additional advantage: the users only need to ask one instance for answers
instead of having to perform the rather complex search for a responsible name server
themselves. The cache takes over the responsibility to recursively discover the records: it is
a recursive resolver or simply a recursor.

All the other systems in the local network as well as all the applications running on these
systems now only need to query the recursive resolver which means their logic can be a
whole lot more simple. Since they are only formulating queries and processing the answers
but don’t do all the heavy lifting, they are called stub resolvers. Indeed each networking
application comes with a stub resolver. It is typically part of the system library used by the
application.

The recursive resolvers to be used need to be configured in the system. Since this is such a
fundamental part of the network configuration – without DNS the system effectively wouldn’t
be able to do anything useful with its Internet connection –, discovery of the local DNS
resolvers was added to the DHCP protocol for auto-discovering the network configuration,

Relevant DNSSEC Concepts and
Basic Building Blocks

Document name: Relevant DNSSEC Concepts and Basic Building
Blocks

Page: 21 of 63

Dissemination: PU Version: Version 1.0 Status: Final

which is how most systems get their configuration and update it when switching to different
networks.

In practice, there exists a hybrid form between a stub and recursive resolver. While being
configured as a network’s resolver receiving the queries from all local stub resolvers, it in turn
redirects all of them to a fixed set of upstream resolvers while caching the answers. These
hybrids, called forwarders or caches, often appear in home routers to improve response
times for often asked queries by omitting the round trip to the ISP’s recursors.

In complex network topologies, elaborate combinations of recursors and forwarders are used
to provide an efficient and reliable DNS service to all systems.

5.8 Down to the Wire
Communication between all the components, resolvers, both stub and recursive, and name
servers and even the special procedures like zone transfer or update, use the same wire
protocol. The protocol follows a request/response pattern where someone creates and sends
out a request that eventually will be processed by someone else who returns a response with
either the results if processing succeeded or an error message. Furthermore, both requests
and responses use the exact same message format.

Messages consist of a fixed-length header with bookkeeping information, such as whether
the message is a request or response, what type of operation was requested, etc. The
header is followed by the question section which describes the information requested. It is a
list of questions, each consisting of a domain name, class, and record type. Finally, there
are three sections each containing a (potentially empty) list of resource records. These
sections are the answer section for records that answer the question asked, the authority
section for records describing who is authoritative for the answer, and the additional section
for records that help with or are necessary for making sense of the answer.

In a regular query the client wants to get all the resource records identified by a triple of a
domain name, class, and record type. Not incidentally, that is exactly what a question is.
Thus, the request for a regular query contains exactly one question in the question section
and leaves all the record sections empty.

In the normal topology, this request message is sent by the stub resolver to its upstream
resolvers. Upstream will check whether it can answer the request from its cache. For this to
be possible, it needs to hold the answer in its cache and that answer mustn’t have expired
yet. To check this, less time must have passed since it inserted the answer than the smallest
TTL of any of the records that are part of the answer. This is because an answer has to be
complete – the resolver can’t just drop expired records and return the rest.

If the cache entry is valid, the resolver can simply take it and construct a response message
to be returned to the stub resolver. The TTL of all the records included in that message
needs to reflect the time that has passed since the records were added to the cache. As a
result, the TTL in a response is often lower than the one given in the original zone file: it
shows the time left until an upstream resolver will have to fetch the response anew. If records
have been modified upstream, it will also take this time until both the upstream resolver and,

Relevant DNSSEC Concepts and
Basic Building Blocks

Document name: Relevant DNSSEC Concepts and Basic Building
Blocks

Page: 22 of 63

Dissemination: PU Version: Version 1.0 Status: Final

transitively, the stub resolver will realize the fact. This explains the delay experienced
between updating records in the zone and clients actually picking up the changes. The delay
depends on the TTL of the records in the zone. If it is set to 86400 seconds, as is often the
case, it can take up to a day for clients to catch up, depending on when exactly they asked
for a record last before it was changed.

Choosing a good value for the TTL is therefore an important decision when crafting zone
content. Cached responses arrive more quickly at a client’s improving overall response time,
for instance when opening a web page. A large TTL makes it more likely that a client will
receive such a cached response. On the other hand, large TTLs make it more difficult to
change values, which make operational changes more difficult as long transitional phases
become necessary and disaster recovery more complicated.

If a response isn’t available from its cache, the upstream resolver will have to forward the
request somewhere. A simple forward can just send it to one of its upstream resolvers,
pushing away the work.

Eventually, a recursive resolver will have to determine the name servers authoritative for the
zone the requested records are part of. It needs to start somewhere, so it needs to know of
at least one name server that can be used to bootstrap the process. Because of the tree
structure of the domain name space and delegation from there into sub-trees, name servers
for the root zone can be used to discover any zone.

Thus, the resolver forwards the request to one of the root servers. Apart from its exposed
location, this server is no different than any other name server. When it processes the
request, it looks at the domain name in the question first. There is one of four things that can
happen. If it has at least one record (of whatever record type) for the name, the name exists
and is part of a zone the server is authoritative for. This means that it can assemble the
response and return it. If there are records of the type asked for, it will add these to the
answer. Otherwise, it will return an empty answer as part of the otherwise successful
response.

If the server doesn’t have records for the domain name, it might at least have delegation
records for a suffix of the name. This would mean that some other name server is
responsible for the sub-tree the domain name lies in and the server can direct the requestor
to a name server that brings it closer to the requested domain name.

If there are no records for the name and no delegation towards the domain name but the
server is authoritative for a zone whose apex is a suffix of the requested domain name, the
server is authoritative for the requested domain name but knows of no records owned by it.
In this case the server can authoritatively say that the name does not exist, an error message
known as NXDOMAIN.

Finally, if the requested domain name isn’t below the apex of any of the zones known to the
server, it can’t really make any statement and will refuse to process the request.

For the request towards the root server, the delegation case will happen if the requested
name is an existing TLD. If, as in the initial example, the request is for the MX records for

Relevant DNSSEC Concepts and
Basic Building Blocks

Document name: Relevant DNSSEC Concepts and Basic Building
Blocks

Page: 23 of 63

Dissemination: PU Version: Version 1.0 Status: Final

‹example.com›, the root server should produce a response pointing the resolver to the name
servers that are authoritative for the ‹com› zone. Using the format used by the Unix tool DIG
for displaying DNS messages, its request would look something like this:5

;; QUESTION SECTION:
;example.com. IN MX

;; ANSWER SECTION:

;; AUTHORITY SECTION:
com. 172800 IN NS b.gtld-servers.net.
com. 172800 IN NS a.gtld-servers.net.
com. 172800 IN NS c.gtld-servers.net.

;; ADDITIONAL SECTION:
b.gtld-servers.net. 172800 IN A 192.33.14.30
b.gtld-servers.net. 172800 IN AAAA 2001:503:231d::2:30
a.gtld-servers.net. 172800 IN A 192.5.6.30

The answer section is empty because the name server doesn’t have any records that answer
the request. The authority section contains the delegation records of the zone the server
thinks is responsible for the requested domain name, that is, its NS records. The additional
section contains the glue records: all address records for the name servers of the delegated
zone that the server knows of. In this example, the root server only has been told address
records for two of the three servers returned.

When the recursor receives this response, it can try its request again at a name server closer
to the requested name. It will pick one of the name servers, possibly start another query for
its address records if they aren’t included in the additional section, and repeat the request
there. For the example, this will, once again result in a response with an empty answer, this
time pointing to the name servers for ‹example.com›. Another step is necessary – the
request needs to be sent to one of these servers.

Here, finally, records are available. The server might respond like so:

;; QUESTION SECTION:
; example.com. IN MX

;; ANSWER SECTION:
example.com. 86400 IN MX 10 alcor.example.com.
example.com. 86400 IN MX 15 capella.example.com.
example.com. 86400 IN MX 15 deneb.example.com.

;; AUTHORITY SECTION:
example.com. 86400 IN NS nsa.example.com.

5 The real response will contain more records. The ‹com› zone actually has thirteen name server
entries.

Relevant DNSSEC Concepts and
Basic Building Blocks

Document name: Relevant DNSSEC Concepts and Basic Building
Blocks

Page: 24 of 63

Dissemination: PU Version: Version 1.0 Status: Final

example.com. 86400 IN NS nsb.example.com.

;; ADDITIONAL SECTION:
alcor.example.com. 86400 IN A 192.0.2.81
alcor.example.com. 86400 IN AAAA 2001:0DB8::81
capella.example.com. 86400 IN A 192.0.2.42
capella.example.com. 86400 IN AAAA 2001:0DB8::42
deneb.example.com. 3600 IN A 192.0.2.43
debeb.example.com. 3600 IN AAAA 2001:0DB8::43
nsa.example.com. 86400 IN A 192.0.2.12
nsa.example.com. 86400 IN AAAA 2001:0DB8:12
nsb.example.com. 86400 IN AAAA 2001:0DB8:13

There now are records in the answer section! Much like in the delegation case, the authority
section lists the name servers for the zone. The additional section now is larger. It lists all the
address records, both IPv4 and IPv6, for the mail servers mentioned in the MX records and
the name servers from the NS records.

5.9 Message Size Limits
Recursive discovery of name servers requires a recursor to rapidly fire off requests to a
number of different servers. This process needs to be fast if it shouldn’t incur a large delay in
an application. A connection-oriented transport protocol such as TCP requires a number of
round-trips just to establish a connection before any payload data can be exchanged. On the
other hand, most connection-less protocol such as UDP don’t guarantee packet delivery. The
only way to deal with packet loss is to stop waiting for a response after a certain time and
declare a packet lost. Favoring the faster response time for the much more common ‘happy
path,’ DNS uses UDP.

This, however, has one additional drawback: When using UDP, DNS messages need to fit
into a single IP packet.6 The initial DNS specification therefore limited the size of DNS
messages when using UDP to a conservative 512 bytes. An extension mechanism has since
allowed to increase the size where knowledge of the underlying network topology allows. In
practice, the limit is 1280 bytes.

This still isn’t an awful lot and needs to be considered when designing applications and
extensions for DNS. Data sets that can become large cannot be stored in DNS directly.
Instead, a better strategy is to only store pointers in DNS describing how data sets can be
retrieved using other protocols. Uniform Resource Identifiers (URIs), a standard mechanism
describing both the protocol to be used and the location of resources, are a prime candidate
for such a pointer. The data LIGHTest is making available via DNS – trust lists, trust
translation and trust delegation declarations – is data that can become quite large. Because
of that, chapter 8 will explore this option in detail.

6 Technically, IP fragmentation would allow to split a UDP packet into several IP packets, however,
this often breaks in the presence of firewalls or NAT devices.

Relevant DNSSEC Concepts and
Basic Building Blocks

Document name: Relevant DNSSEC Concepts and Basic Building
Blocks

Page: 25 of 63

Dissemination: PU Version: Version 1.0 Status: Final

Another case benefitting from this strategy is often changing data. As described above, the
caches used by the various resolvers all introduce a potential delay for propagation of
updated DNS data. Data retrieved from, say, an HTTP server, however, can be updated as
often as needed or even generated dynamically for each request.

If data doesn’t change very often and DNS is merely used to verify that information retrieved
in some other way is indeed correct, another strategy is to store a hash over the data in
DNS. Chapter 7 will show how this is used by DANE to store the fingerprint of a certificate in
DNS instead of the actual certificate.

Yet however small the records are, there will always be cases where a response won’t fit into
a single packet. One example are zone transfers where all the records of an entire zone are
to be included in the response. Only the smallest of zones will fit into one UDP packet. This
is why a server can indicate that it had to truncate the message when constructing the
response and why DNS can also use TCP as its transport protocol. Originally, TCP support
was optional but the added data from DNSSEC as explained in the next chapter has made it
more common that messages grow too big and TCP is now mandatory. [8]

But even with TCP there still is a size limit. When using this transport protocol, all DNS
messages are prefaced with their length expressed as a sixteen bit value, meaning that a
message can be at most 65536 bytes long. For transferring large zones, even this may not
be enough. The mechanism therefore allows splitting the data over several DNS messages.

5.10 Extending DNS
Like many Internet protocols, the ability to be extended to new use cases nobody could even
think of during design is part of DNS’s DNA. Indeed, as the curious case of the class attribute
shows, the specification provides more options for extension than is actually needed.

Of course, being extendable doesn’t necessarily mean that a protocol is the best tool for a
given problem. The original design choices inform a set of limitations. If these collide with the
problem, one can try to work around them or look elsewhere.

For DNS one such limitation is that it has been conceived as a public database. All the data
stored is always available to everyone who asks. There is no method of authorization for
regular queries.7 While it is possible to work around this and make zones only available
based on the source address of the requestor, this isn’t intended and has a tendency to
break in unexpected ways. Use cases that require authorization for accessing information
are better off using a different protocol or employ a hybrid strategy where DNS is only used
to discover the location of the data and transport protocol for access.

Another point to consider is that the only input when searching for data is the domain name.
This is often quite useful, since a domain name is guaranteed to be under the control of a

7 For operational queries, such as zone transfers or UPDATEs, a mechanism called transaction
signatures or TSIG allows the receiving party to verify authorization of the sender and correctness of
the data. However, this mechanism requires bilateral, administrative agreements.

Relevant DNSSEC Concepts and
Basic Building Blocks

Document name: Relevant DNSSEC Concepts and Basic Building
Blocks

Page: 26 of 63

Dissemination: PU Version: Version 1.0 Status: Final

single party limiting the chance of an accidental name collision. That is, domain names are
well suited as unique identifiers. If searches are based on such identifiers, then DNS is a
good choice for a database, particularly, if the identifiers can be chosen freely to conform
with the domain structure.

Existing unique identifiers can be converted into domain names. For instance, for reverse
pointer lookups – queries to identify the host name associated with a given IP address –, IP
addresses are converted into domain names by using the decimal representation of the
address components, bytes for IPv4 addresses or segments for IPv6, as labels. The resulting
sequence of labels is then anchored somewhere well-defined in the DNS name space. For
IPv4 reverse lookups, this is ‹in-addr.arpa›, so that the address 192.0.2.88 turns into the
domain name ‹88.2.0.192.in-addr.arpa›. If the sequence of labels cannot be modeled in
accordance with the ownership of individual identifiers, zone delegation cannot follow this
ownership requiring administrative overhead for coordinating updates of zone data between
owners of identifiers and owners of the respective zones.

If search input isn’t based on identifiers at all but rather on a set of specific values, DNS is
probably not a good choice. A borderline case with a feasible workaround is when a unique
identifier is combined with a small set of specific values. For instance, the SRV mechanism
allows to discover the hosts and port numbers where a certain network service is provided
for a domain. Here, the domain is the unique identifier whereas the service is additional
input. This input is provided as a series of prefix labels to the domain name, each with a
concrete meaning. In case of SRV, the prefixes are first the name of the service, followed by
the transport protocol since the protocols for some service can used both atop TCP and
UDP. To avoid collisions with actual domain names, these prefix labels are formed by
including characters that are illegal for host names, specifically, they start with an
underscore. So, when searching for the host names that provide the HTTP service for
‹www.example.com›, one would query for the SRV records for
‹_http._tcp.www.example.com›.

The alternative option would have been to include this information – transport protocol and
service – in the record data of the individual SRV records. But since a query can only be for
all the records of a given type under a given domain name, each query would return the
records for all the services provided for this domain. This is both a waste of bandwidth and a
potential security issue as it would allow to enumerate the services provided. The
‘underscore prefix labels,’ as cumbersome as they appear at first, neatly sidestep these
issues.

Relevant DNSSEC Concepts and
Basic Building Blocks

Document name: Relevant DNSSEC Concepts and Basic Building
Blocks

Page: 27 of 63

Dissemination: PU Version: Version 1.0 Status: Final

6. DNSSEC

6.1 Threats to DNS
To have a better understanding on how DNSSEC provides solutions, it is necessary to know
the existing problems. Even while there are several different classes of threats to the DNS,
few of them are specific to singularities of the DNS protocol itself.

6.1.1 Man or Monkey in the Middle (MITM) Attacks
The well-named man (or monkey) in the middle attack is one of the principal techniques most
often employed in computer-based hacking. Basically, it consists of being in the middle of the
conversation secretly, with the possibility to modify the communication between the two
hosts who believe they are communicating with each other directly.

Regarding the DNS protocol, the hacker can simply tell either party, commonly the resolver,
whatever it wants that party to receive. The receiver of data from a DNS name server cannot
know the authenticity of its origin or verify its integrity. This is because DNS does not detail a
procedure for servers to give any authentication detail for the data they will push down to
clients. In case of a resolver, there is no mechanism to check the integrity and authenticity of
the data sent by name servers. In addition, the resolver can only verify the authenticity of the
origin of a DNS response data packet using the source IP address of the DNS server,
destination and source port numbers and DNS transaction ID. The attacker can fabricate in
an easy way a DNS server’s response packet to answer properly using the same
parameters. The receiver of this new answer has to trust as reliable the data provided by the
attacker. The attacker might even choose to return an unaltered answer of a reply message
while using other parts of the message to modify it.

Even more, with the ceaselessly growing usage of wireless networks, the access to non-
secure networks is more common allowing new types of man-in-the-middle attacks

6.1.2 DNS Spoofing
In the situation where a DNS server cannot resolve a given query, it forwards the query to a
second DNS server higher up in the tree of server. Here ends the communication between
DNS client and first contacted DNS server for that particular request. This mechanism is
called DNS forwarding.

One kind of man-in-the-middle attack is trying to replace the mentioned higher DNS server
during DNS forwarding. The DNS client is fooled into thinking that it is receiving a response
from a trusted DNS server when, in fact, it is being spoofed. Each DNS packet has an
associated Transaction ID, a16-bit field that DNS servers use to determine what the original
query was. This attack can be performed by means of guessing what the next DNS response
transaction ID will be and sending a reply with the guessed sequence number to a DNS
client. Due to its small amount of bits and the server UDP port associated with DNS is a well-
known value, there are only 232 possible combinations of ID and client UDP port for a given
client and server. It implies a security breach against brute force attacks to know this

Relevant DNSSEC Concepts and
Basic Building Blocks

Document name: Relevant DNSSEC Concepts and Basic Building
Blocks

Page: 28 of 63

Dissemination: PU Version: Version 1.0 Status: Final

combination. Because of the mechanism used by this technique, this type of attack is known
as ‘ID guessing.’

6.1.3 Cache poisoning
A primary component of the DNS architecture is the ability to cache responses to queries in
order to reduce the access times associated with the DNS service. DNS servers cache all
information for all zones the DNS server is authoritative for and the results of all recursive
queries performed since their last start up to save time in case they receive a similar query
again. As it could be imagined, the DNS cache poisoning involves replacing the information
stored in the cache records. The next time the DNS server is queried, it will reply with the
incorrect information.

There are some variations on this kind of attack, but what they all have in common is the
records infected, the resource records.

6.1.4 Name Chaining
This variation of cache poisoning is achieved by means of resource records whose record
data includes a domain name which can be used as a place where an attacker puts wrong
data into a target’s cache. The most affected in this class of records are CNAME, NS, and
DNAME. False information, associated with these names, can be injected into the victim’s
cache using the additional section of the response. An attacker can introduce arbitrary DNS
names of the attacker’s choosing, and provide further information that is claimed to be
associated with those names. [9]

6.1.5 Hijacking
This kind of attacks tries to take advantage of a weakness in the administrative side of
domain name services rather than technically attack the infrastructures or DNS servers.

Also known as name-jacking, this attack consists of appropriating the domain name or
taking control by technical means to divert traffic to a rogue domain under the control of the
attacker, such as by modifying the name servers hosting the site, or modifying the behavior
of a trusted DNS server. In the case the integrity of DNS has been compromised, anyone
who attempts to reach a website could connect to the attacker’s websites without knowing it.
Once there, they may be tricked into exposing any kind of sensitive information.

The common use of the term encompasses a number of attacks and incidents including [10]:

• impersonation of a domain name registrant in correspondence with a domain name
registrar,

• forgery of a registrants account information maintained by a registrar,
• forgery of a transfer authorization communication from a registrant to a registrar,
• impersonation or another fraudulent act that leads to the unauthorized transfer of a

domain from a rightful name holder to another party,
• unauthorized DNS configuration changes that disrupt or damage services operated

under a domain name, including web site defacement, mail service disruption,
pharming and phishing attacks.

Relevant DNSSEC Concepts and
Basic Building Blocks

Document name: Relevant DNSSEC Concepts and Basic Building
Blocks

Page: 29 of 63

Dissemination: PU Version: Version 1.0 Status: Final

6.1.6 Denial of Service (DoS)
An understandable definition could be that an attacker attempts to prevent users from
accessing all or part of the information or services hosted in a system by targeting the host
and its network connection. The most common type of DoS attack occurs when an attacker
overflows a network with useless information, also known as flooding the network. These
attacks could be targeted at a specific service like DNS, usually to the specific root servers
DNS relies on.

It is important to highlight the risk that DNS servers that are not broken down by the DoS
attack but manage to process the incoming flood of request can then be used as a
springboard for an amplification attack against other target servers. Since DNS responses
are significantly larger than the requests, a DoS attack with much higher bandwidth can be
produced by spoofing the source addresses of the request as those of the target servers.

As mentioned before, these attacks could be aimed to the DNS servers or the network
infrastructure. Using the reference of OSI levels, it is possible to find DoS attacks on the
network infrastructure between the clients and the servers in all layers of the network
infrastructure [11]. It could mean that if the whole network gets down that it cannot be
expected that DNS continues to work but possible DNS local services can be run as a
backup.

This category includes the reflection attack which occurs when thousands of requests are
sent using the name of the victim as the source address. When recipients answer, it means
all responses will converge on the official sender, whose infrastructure is then affected.

DoS attacks are hard to prevent because it is very difficult to distinguish a DoS attack from a
normal peak in the visits to a large website. Using authentication could allow to make the
distinction by identifying the single origin of a DoS attack by looking at the distribution of
packets over IP addresses.

6.1.7 Distributed Denial of Service (DDoS)
Distributed attacks are a more elaborate way of a DoS that involves a huge amount of
attackers, generally, launched simultaneously by a large number of systems. It is almost
impossible to detect such an attack if multiple hosts run the attack in a coordinated way
against their target. This type often involves so called botnets, which consist of thousand
machines controlled using various tools by the attacker so that the combined bandwidth
exhausts the available bandwidth of most victim’s systems.

Commonly used forms of DDoS attacks, both past and present:

• Transport layer SYN flood: the requester first sends a SYN message to initiate a TCP
conversation with a host, that responds with a SYN-ACK message and its
corresponding receipt confirmation. In case of the attack, the requester sends
multiple SYN messages to the targeted server, but does not transmit any confirmation
ACK messages. The requester can also dispatch spoofed SYN messages, causing
the server to send SYN-ACK responses to a falsified IP address.

Relevant DNSSEC Concepts and
Basic Building Blocks

Document name: Relevant DNSSEC Concepts and Basic Building
Blocks

Page: 30 of 63

Dissemination: PU Version: Version 1.0 Status: Final

• Ping of Death: where the attacker manipulates IP protocol by sending packets larger
than the maximum byte allowance divided in fragments. Once reassembled the
fragments it creates a packet larger than allowed, causing servers to reboot or crash.

• ICMP Flood (also known as Nuke): This attack occurs as a result of sending corrupt
and fragmented ICMP packets that overload the targeted network’s bandwidth and
impose extra load on the firewall. This attack relies on compromising user networks
and is an old distributed denial of service attack.

6.1.8 Denial of Existence
Denial of existence is a mechanism that informs a resolver that a certain domain name does
not exist. It is also used to signal that a domain name exists but does not have records of a
specific type.[12] The threat appears when the resolver is unable to detect whether an
attacker removes resource records from a response. Depending on the nature of record
types the non-existence may cause an immediate failure. Authenticated denial of existence
uses cryptography to sign the negative response.

6.2 Digital Signatures for DNS Records
In order to be able to respond to these threats, a resolver needs to be provided with a way to
verify the authenticity of the resource records it receives as answers to queries. A common
strategy for verifying the authenticity of data is to use public-key cryptography to provide
signatures of the data.

Instead of using a single key for both encrypting and decrypting data, public-key algorithms
employ separate keys for the two steps. This pair of keys is chosen in such a way that
whatever is encrypted using one key only be decrypted with the other. If the owner of the key
pair openly publishes one of the keys, the public key, and keeps the other one, the private
key, thoroughly under lock, everyone can use the public key to encrypt a message that only
the owner can decrypt again.

But the keys could also be used the other way around: If the encryption key is kept private
and the decryption key made public, the key pair’s owner can encrypt a message using the
private key which everyone can decrypt with the public key. While this seems a bit pointless
at first, it is worth noting that the original data and the decrypted data will only match if the
matching pair of keys was used – i.e., if data indeed came from the owner – and if the
encrypted data hasn’t been tampered with. If the original data itself is included in the
message, it can be compared with the decrypted data. If they match, this application proves
that the original data is indeed from the owner of the private key and that neither the original
data nor the encrypted data have been changed. In turn, if they don’t match, one of these
wasn’t true. It isn’t possible to say which, but at least it is clear that the data shouldn’t be
used.

Sending both the original and encrypted data side-by-side isn’t very efficient. The encrypted
data doesn’t really need to contain all the information to recreate the original data. Instead, a
more compact representation of the original data could be encrypted and sent along,
provided that it is not possible (or at least very expensive) to create alternative original data

Relevant DNSSEC Concepts and
Basic Building Blocks

Document name: Relevant DNSSEC Concepts and Basic Building
Blocks

Page: 31 of 63

Dissemination: PU Version: Version 1.0 Status: Final

that would result in the same compact representation – resulting in verification incorrectly
succeeding. Cryptography provides so called hash functions that provide exactly this
property. They create a short message digest from input data of any length that fulfills these
conditions. If this digest is encrypted using a private key, it becomes a digital signature. The
process of creating a digital signature and adding it to the data before sending it out is called
signing a message.

When verifying some data accompanied by a digital signature, a receiver first decrypts the
digital signature into the message digest using the public key published by the sender. It then
calculates the digest of the received data and compares it to the decrypted signature. The
data verifies as authentic if and only if the two match.

In the case of the DNS, a network user wishes to verify that the data received in response to
some query is authentic. The data to be signed is the DNS message answering the query. It
needs to be signed by whoever assembled it – and the user needs access to the public key
of that party.

In the case of a stub resolver this is relatively straightforward. The upstream resolvers have
to be configured somehow, anyway, so the public keys used by them can be installed as part
of that configuration. A recursive resolver, however, has to talk to a wide variety of name
servers, potentially each and every name server on the whole Internet. Manually installing
and maintaining all the public keys used by all of these servers is impossible.

But what is the answer, exactly? It consists of all the resource records of a given type for a
given domain name and class. No matter who requests this answer, it will always be the
same so long as this set of records doesn’t change at the primary name server authoritative
for the zone covering the domain name. If the digital signature were created by that primary
name server and passed along when transferred to the secondary servers of the zone and
when answering queries, then it could just be forwarded and cached by resolvers.

This is exactly what DNSSEC does: when updating a zone’s data, all the resource records
for the same domain name, class, and record type are collected into a resource record set –
written and even pronounced as RRset. A digital signature is then created for this RRset.
Before that happens the records are sorted into a well-defined order, though, so that a client
can do the same when later re-creating the digest for verification.

This signature needs to be published. Yet the existing DNS protocol shouldn’t be changed in
any way disturbing operation of clients and resolvers that aren’t aware of DNSSEC. Which
means that the message format needs to remain the same. Luckily, the DNS provides means
for extension, one of which is additional resource record types. Enter the RRSIG record: one
such record will be added for each RRset of the zone. It will be stored under the same
domain name and class as those of the RRset and contains the record type and signature as
well as some additional bookkeeping information as the record data.

6.3 A Chain of Keys
Which leaves the question of the keys. Which key pair should be used when creating these
signatures and how will the clients make sure they have the correct public key when trying to

Relevant DNSSEC Concepts and
Basic Building Blocks

Document name: Relevant DNSSEC Concepts and Basic Building
Blocks

Page: 32 of 63

Dissemination: PU Version: Version 1.0 Status: Final

verify the signatures. The latter point is quite important. Imagine an adversary is in the
position to intercept and manipulate communication from and to a resolver. It can now
generate a key pair and use the private key to create signatures for forged upstream
answers. The resolver will verify these answers as authentic if the adversary somehow
manages to convince it to accept the public key of the adversary’s key pair. This is the
classic case of a man-in-the-middle attack. All public-key cryptography is susceptible to this
attack and requires measures to allow verification of public keys.

At this point the scheme to allow verification of the authenticity of data relies on the
verification of the authenticity of the public keys. The latter can be achieved by using the
scheme itself and signing the key; adding a signature to it using some other key pair.
Granted, this only delays the inevitable: at some point there needs to be a key that is known
to be correct. This is called the trust anchor. It needs to be made known to the system
somehow. If a chain of digital signatures leads from the public key used to sign the data to
this trust anchor then a key is legitimate.

Or, almost: a key needs not only to be legitimate in general but it needs to be authorized to
sign the particular data, i.e., the particular RRset. It makes sense to tie that authorization to
the authorization to manipulate the RRset in the first place: the zone. If the entire zone uses
the same key, it can be published as part of the zone data much in the same way as the
authoritative name servers are published. What’s more, in the same way that those name
servers are legitimized by being made part of the parent zone as delegation records, the key
can be legitimized, too.

This is exactly what happens: the key, or rather keys – a zone is allowed to use more than
one key at any time –, are published in the form of DNSKEY records under the domain name
of the apex of the zone. A digest of these keys, called (in a case of mixed analogies) a
fingerprint, is published in DS records as part of the delegation records in the parent zone.
The parent zone uses its own keys to sign these DS records, i.e., to create an RRSIG record
for it. By doing so, the parent zone signs the keys transitively by signing their fingerprints and
confirms that these keys are legitimately used to sign the child zone.

Figure 3 shows the relationships between the resource records and the corresponding RRSIG
records, their signing keys referenced in the the DNSKEY record and the secured delegation
through the DS records signed in the parent zone.

Relevant DNSSEC Concepts and
Basic Building Blocks

Document name: Relevant DNSSEC Concepts and Basic Building
Blocks

Page: 33 of 63

Dissemination: PU Version: Version 1.0 Status: Final

Figure 3. Delegation from ‹com› to ‹example.com› with DNSSEC. The figure shows
how the DS record in the parent zone relates to the DNSKEY records in the child zone.
It also shows the RRSIG records in both zones.

The same is done for the keys of the parent zone by its parent zone and onwards all the way
to the root zone. Finally, the keys of the root zone serve as the trust anchor and need to be
known to a resolver that wishes to verify DNS data. Using these configured root keys, the
resolver can follow the chain all the way down to the individual RRset.

Relying on the chain of keys for verification has a few important consequences. For one, just
providing the DNSSEC-related resource records for an individual zone is not enough to allow
verification for it. In order to be able to use these records, the zone’s parents all the way up
to the root need to be signed, too. If only one zone isn’t signed in this way, the chain is
broken and verification is impossible.

While the root zone itself has been signed since 2010, still not all TLD zones are signed or
allow their delegate zones to provide them with DS records to be installed as part of
delegation. When relying on DNSSEC, it is thus important to choose a TLD that does provide
DNSSEC and make sure that all zones between that TLD and the zone holding the intended
records are signed and properly delegate DNSSEC information, too.

What’s more, one has to trust that all the parent zones remain true and honest. Nothing
really stops the parent domain from changing delegation records or entirely taking over a
child zone. It is therefore somewhat important to keep the number of zones towards the root
not under one’s own control small. In addition, care should be taken when deciding on a TLD
to place the zone under, choosing a TLD run by a trustworthy organization instead of, for
instance, picking a TLD solely on the sound of the resulting domain name.

nsb.example.com.NS

com.

nsa.example.com.NS

nsa.example.com. A 192.0.2.88

nsb.example.com. A 192.0.2.89

example.com. nsa.example.com.NS

…

…

alcor.example.com.MX alcor.example.com.MX

example.com.

nsa.example.com. A 192.0.2.88

nsb.example.com. A 192.0.2.89

example.com. …SOA

nsb.example.com.NS nsa.example.com.NS nsa.example.com.NS

alcor.example.com.MX

alcor.example.com. A 192.0.2.81

…

Ⓓ

Ⓖ

Ⓐ

Ⓖ

Ⓐ

Ⓓ

…

example.com. …DS

…RSIG

…RSIG

com. …DNSKEY

…RSIG

…DNSKEY

…RSIG

…RSIG

…RSIG

…RSIG

…RSIG

…RSIG

Relevant DNSSEC Concepts and
Basic Building Blocks

Document name: Relevant DNSSEC Concepts and Basic Building
Blocks

Page: 34 of 63

Dissemination: PU Version: Version 1.0 Status: Final

6.4 Operating DNSSEC-aware Zones
Manually providing all the additional resource records necessary to allow a zone to be
verified via DNSSEC is not very practical at best and, for larger zones, nigh impossible. This
task is therefore given to software. Either the primary name server of the zone is aware of
DNSSEC and can take over the task of re-signing the zone every time the zone data is
updated or special dedicated software is being deployed which signs the zone before
passing it on to the primary name server. The latter case is similar to the concept of a hidden
primary introduced in chapter 5, an arrangement that should also be considered if the former
case is chosen.

One of the reasons for this is the matter of key management. The integrity of DNSSEC relies
entirely on the integrity of the private keys used for zone signing: securing the key against
loss or misuse is an important operational consideration. Since the system performing the
key signing needs to have access to the private key, securing this system is vital.

This is all the more important because delegation makes it more difficult to exchange a
compromised key. For this to happen, the DS records of the parent zone need to be changed,
which may require manual intervention and incur delays.

To mitigate this problem, DNSSEC allows for a kind of layered key management. Instead of
using the keys registered with the parent zone directly, they are only used to sign the DNSKEY
RRset. This RRset contains a number of additional keys that are actually used for signing all
the other records of the zone. According to their use, the keys found in the DS records is
called key signing keys (KSK), the additional ones are zone signing keys (ZSK). Because
only the zone signing keys are needed when zone data is updated, only they need to be kept
online. The key signing keys are only required when the DNSKEY RRset is updated. Since
that happens relatively rarely, they can be stored away safely offline.

In this scenario, if a zone signing key is compromised and needs to be removed, only its
DNSKEY records need to be removed and the DNSKEY RRset resigned with the key signing
keys. The operator of the parent zone does not need to be involved at all.

6.5 Verifying DNS Records
Once the DNSSEC resource records are part of the zone data, users can start validating the
answers they receive. This consists of two steps: verifying that any RRset provided in the
answer matches the signature provided in the corresponding RRSIG record and verify that for
the key used to generate the signature exists an unbroken chain of signatures tracing all the
way to the trust anchors.

Especially the second part might require a lot of records to be gathered from various name
servers and then their signatures verified. Many of these records will be used again and
again for subsequent queries. For instance, each query for any record in a .com domain will
require the DS and DNSKEY record sets for ‹com›. The caching provided of the existing DNS
model already helps with retrieval of all these records. It makes sense to extend caching to
also include the verification result for the records instead of having every stub resolver –
which is part of each individual application process – redo all the checks. However, such an

Relevant DNSSEC Concepts and
Basic Building Blocks

Document name: Relevant DNSSEC Concepts and Basic Building
Blocks

Page: 35 of 63

Dissemination: PU Version: Version 1.0 Status: Final

extended cache needs to be trustworthy. A typical way to achieve this is to operate a
verifying forwarding or recursive resolver as part of the local system and have stub resolvers
use this resolver instead of the one provided as part of the local network.

The result of this process can be one of three things. In the best case, everything pans out:
the record set is signed with an unbroken chain of keys. If the record set isn’t signed at all or
if the chain of keys is broken at some point, no assertion can be made regarding the
authenticity of the records; they are said to be insecure. This isn’t necessarily bad, the fact
just needs to be considered.

If, however, verification of any of the signatures involved fails, verification fails. It doesn’t
matter whether this happens for the signature of the RRset itself or of any of the DNSKEY or
DS sets along the chain. The records are said to be bogus and must not be used. While the
most likely reason is that a misconfiguration happened on a system along the way, it is also
possible that someone has tampered with the records – the very threat DNSSEC has been
designed to deal with.

The difference between insecure and bogus is subtle but important. If an answer is insecure,
verification couldn’t be completed because of lack of DNSSEC support in some zone along
the way to the root. The response is as good as if there hadn’t been any DNSSEC at all.
Bogus, on the other hand, means that something is wrong with the records and they mustn’t
be used.8

A centralized verifying resolver will therefore report a server failure instead of relaying bogus
records. A user can circumvent this through a special flag in the query, called the CD bit for
‘checking disabled.’ It instructs the resolver to just do that: not to verify any records and just
pass them along.

Another flag, the AD bit for ‘authentic data,’ is used by a verifying resolver to signal whether
the resource records contained in the response could be verified. If the resolver determines
one or all of the records to be insecure, it will still return the records but signal their status by
not setting the AD bit in the response.

6.6 Limits of DNSSEC
As a result of using DNSSEC, a client can only say whether the records received as an
answer to a query are authentic: whether they have been made available with the content
delivered by whoever de facto controls the DNS domain they are part of. While that is exactly
what DNSSEC set out to provide, it might be worthwhile to keep in mind what DNSSEC does
not provide.

Perhaps most importantly, it does not provide for confidentiality. Queries and responses are
still sent in plain text over the network, entirely open to any eavesdropper. It also doesn’t
change the original model of directing queries to intermediary resolvers. These resolvers will

8 The choice of terms may be a bit unfortunate. Bogus sounds less dangerous than insecure when in
fact, the meaning is exactly the other way around.

Relevant DNSSEC Concepts and
Basic Building Blocks

Document name: Relevant DNSSEC Concepts and Basic Building
Blocks

Page: 36 of 63

Dissemination: PU Version: Version 1.0 Status: Final

still be able to gather data about queries made by their respective users and, based on that
data, profile their behavior.

Recent work in IETF has tried to deal with these issues. The DPRIVE working group has
developed standards for sending DNS communication through encrypted channels using
TLS and DTLS. [13] [14] As relatively recent developments, practical deployment experience
is currently gathered.

Even with transport encryption and the options of authentication TLS provides, DNS remains
a public database.

Relevant DNSSEC Concepts and
Basic Building Blocks

Document name: Relevant DNSSEC Concepts and Basic Building
Blocks

Page: 37 of 63

Dissemination: PU Version: Version 1.0 Status: Final

7. Verifying Identity with DNS

A decision about whether to trust someone for a specific transaction has to be founded on
reliably establishing the identity of that someone – before being able to trust someone, we
need to be sure to know who they are. While often difficult in the world of personal
interactions, this becomes more challenging still with telecommunication. Here, an entity can
only be represented by data, a unique token standing in for the entity – not entirely unlike a
person’s name and date of birth together represent the person in a legal document.

7.1 The System of Certificate Authorities
Verifying identity involves making certain that the entity is indeed authorized to use the token.
The method for doing this has already been introduced in the last chapter. In DNSSEC, the
authorization of someone to update DNS records needs to be verified. This was achieved by
employing digital signatures as a proof that the entity updating the records was in possession
of a secret key representing their authorization. Similarly, a digital signature over the token
can be used to prove the possession of the secret key authorizing the use of the token.

As in DNSSEC this authorization is normally confirmed transitively starting at some trusted
anchor point. While in DNSSEC this chain could follow zone delegation, no such natural
relationship exists in the more general case. Instead, the chain is established through so-
called certificates. Each certificate states that a certain key pair is authorized to be used for a
certain identifying token, that is, for a certain entity. Crucially, it also carries a digital signature
attached to it by some entity called the certificate issuer. As a result, the certificate states that
the issuer confirms the key pair’s authorization to represent the entity. An entity issuing
certificates for other entities is called a certificate authority or CA.

Each CA in turn has at least one certificate authorizing their key pair to be used to issue
certificates for this CA. Such a certificate could have been issued by some other CA. It could
also be issued by the CA itself. This is called a self-signed certificate. Because it is self-
affirming, no authority can be derived from it; it has to be verified by other means. This
happens in the same way as with the root keys in DNSSEC in that they are installed as trust-
worthy on the system doing the verification. In fact these certificates – which can be normal
certificates signed by other entities – have a similar name: root certificates.

The root certificates act as an anchor for certificate verification. When trying to verify an as
yet unknown certificate, a chain needs to be built from the certificate via the CA certificate of
its issuer and, recursively, their issuers to at least one of the root certificates of the verifier.
Only if such a chain exists can the certificate be accepted as verified.

This system of transitive verification based on a number of well-known and trusted CAs
forms the basis how identities are verified on the Internet currently. Most systems include a
regularly updated list of root certificates. One commonly used list is the Mozilla CA Certificate
Store [15]. At the time of writing, this list included 182 entries, each of which is typically used
to issue certificates for a CA that then provides certificates used by Internet services.

Relevant DNSSEC Concepts and
Basic Building Blocks

Document name: Relevant DNSSEC Concepts and Basic Building
Blocks

Page: 38 of 63

Dissemination: PU Version: Version 1.0 Status: Final

This results in a rather large number of CAs. Each of these CAs is allowed to issue
certificates for any service. In DNSSEC, because the keys are tied to the hierarchical
structure of the domain name tree, a key can only be used for domain names part of the sub-
tree under its apex. No such limitation exists for the CA system.

An adversary only needs to gain control over one of these CAs to be able to issue to
certificates for any service – or their false impersonation of it. This isn’t a very good system to
build an infrastructure for trust verification on.

7.2 Storing Certificates in DNS
A solution of the issue of any CA being able to issue a valid certificate for a service could be
to store the real certificate in DNS. A user of the service could perform a DNS query and
compare the certificate stored there with the one offered by the service for its
communication. With DNSSEC, this solution becomes realistic, since records stored in DNS
can now be verified for authenticity, too.

Over the years, a number of protocols have been proposed to do just that. RFC 2538
provides a resource record type for storing certificates or OpenPGP keys9, the CERT record.
Additionally, it defines the domain names for looking up these records for a small number of
services, such as for e-mail addresses or the host names for Internet services using the TLS
protocol for providing encryption for their protocols.

A similar record type has been defined for SSH, a protocol for terminal communication, which
uses public keys for identifying both users and servers. It normally presents a fingerprint to
users allowing them perform a manual check. The SSHFP resource record defined by RFC
4255 [17] allows the key associated with a server to be published in DNS, allowing
automated checks, for instance if SSH is used in machine-to-machine communication.

IPSEC, the security extensions for the low-level IP protocol – used for instance in VPNs –,
similarly uses server keys that can be published with the IPSECKEY record type defined in
RFC 4025. [18]

Ultimately, none of these methods are used widely. Learning from the experience gained
with them, however, has led to a new attempt by IETF to provide a framework for storing
certificate information in DNS.

7.3 DANE
“DANE is a set of mechanisms and techniques that allow Internet applications to establish
cryptographically secured communications by using information made available in DNS. By
binding the key information to a domain name and protecting that binding with DNSSEC,
applications can easily discover authenticated keys for services.” — WG charter

9 OpenPGP is a system for public key cryptography providing encryption and digital signatures. It does
not use certificates but rather raw public keys that are verified via the “web of trust,” i.e., by mutually
verifying the validity of a key – which really is just a sort of ad-hoc certificate.

Relevant DNSSEC Concepts and
Basic Building Blocks

Document name: Relevant DNSSEC Concepts and Basic Building
Blocks

Page: 39 of 63

Dissemination: PU Version: Version 1.0 Status: Final

DANE stands for ‘DNS-based Authentication of Named Entities.’ It is used to authenticate
TLS client and server entities while taking out the intermediary, i.e., Certification Authorities
(CA). Initially, TLS used CAs to provide assurance that the client is speaking to the right
server. However, a major challenge is that CAs introduce a single point of failure. If an
attacker compromises a CA, the attacker can generate fake certificates for popular domains.
One notable such case occurred in 2011, when DigiNotar, among other things responsible
for the certificates of the Dutch government, issued fraudulent certificates after a security
break. [31] This is the reason why it is better to rely on the network itself using the DNSSEC
features rather than relying on CAs.

DANE is a standard that uses DNS and DNSSEC to provide secure authentication for any
internet host and it provides a mechanism to specify that a host supports, and actually
requests, TLS-encrypted communication. DANE allows a domain holder to determine which
CA is allowed to issue certificates for the domain and this solves the problem that any CA
could issue certificate for the domain.

7.3.1 TLSA
In order for clients to query the DNS-server for DANE entries, a new DNS resource record
was introduced, which is called TLSA.10 It was first defined in RFC6698 [19] and extended in
RFC7218 [20] with acronyms. This new resource record limits the trust anchors used to
verify the domain.

A TLSA resource record contains four fields named, respectively, Certificate Usage, Selector,
Matching Type, and Certificate Association Data.

Within a TLSA record, the administrator of the DNS zone can specify one of four different
ways to verify a certificate using the Certificate Usage field. The four possibilities are:

• A CA Constraint is indicated in the Certificate Usage field when the field is set to
0. It specifies a CA certificate or public key of a certificate which the client must
find in the validation path of the certificate given by the server in TLS. Since the
particular certificate must be found in the path of the certificate presented by the
server, only certificates from the indicated CA are accepted. This effectively limits
the CAs that can issue certificates for the particular service on a host.

• A Service Certificate Constraint is indicated in the Certificate Usage field when
the field is set to 1. This specifies the certificate or the certificate’s public key that
must match the certificate given by a particular service on a host. It effectively
limits which certificate can be used by a particular service.

• A Trust Anchor Assertion is indicated in the Certificate Usage field when the field
is set to 2. This specifies the certificate or the certificate’s public key that must be
used as a trust anchor when validating the certificate presented by the server in
TLS. This is especially useful for a domain issuing certificates with its own CA that
might not be in the end-user’s list of trust anchors.

10 TLSA a merely the record name. It doesn’t stand for anything.

Relevant DNSSEC Concepts and
Basic Building Blocks

Document name: Relevant DNSSEC Concepts and Basic Building
Blocks

Page: 40 of 63

Dissemination: PU Version: Version 1.0 Status: Final

• A Domain-issued Certificate is indicated in the Certificate Usage field when the
field is set to 3. This specifies the certificate or the certificate’s public key that
must match the certificate given by a particular service on a host. It effectively
limits which certificate can be used by a particular service. Note that the
difference between this and Service Certificate Constraint is that Service
Certificate Constraint must pass the PKIX validation while the PKIX validation is
not tested for Domain-issued Certificate.
(PKIX validation is the process of verifying that a given certificate path is valid
under a public key infrastructure i.e., it is traceable to a trust anchor)

The Selector field within a TLSA record specifies which part of the TLS certificate given by the
server will be matched against the associated data. The option 0 in this field determines that
the full certificate is matched while option 1 specifies that only the certificate’s public key is
matched.

The Matching Type field within the TLSA record determines the format of the certificate
association data. Option 0 in this field specifies that there should be an exact match of the
content chosen via the Selector field, option 1 specifies that a SHA-256 hash of the selected
content should be used, and option 2 specifies that a SHA-512 hash of the selected content
should be used.

Finally, the Certificate Association Data field specifies the data to be matched in the TLSA
record according to the other fields.

A TLSA record binds a certificate to specific ports and protocols in order to distinguish
between the domain and the port and protocol. The ports and protocols have an underscore
added in front of their definition, making them uniquely definable.

The following listing gives a short example of a TLSA resource record. It binds a certificate to
a TCP connection using port 443, typically used by a web server, to the domain
‹www.example.com›. The record specifies that the certificate usage uses a CA constraint,
the selector is a full certificate, and the certificate must fully match. Thus, a client connecting
to the service expects to be presented with a certificate where the chain of issuers contains
the specified certificate.

_443._tcp.www.example.com. 86400 IN TLSA (
 0 0 1
 D2ABDE240D7CD3EE6B4B28C54DF034B97983A1D16E8A410E4561CB106618E971
)

As can be seen, reading such a record is not trivial. In order to make the TLSA record more
readable, mnemonics for the first three data fields have been defined in RFC7218 [20]. Using
these, the same resource record will look like in the following example. No parameters have
been exchanged.

_443._tcp.www.example.com. 86400 IN TLSA (
 PKIX-TA CERT FULL
 D2ABDE240D7CD3EE6B4B28C54DF034B97983A1D16E8A410E4561CB106618E971
)

Relevant DNSSEC Concepts and
Basic Building Blocks

Document name: Relevant DNSSEC Concepts and Basic Building
Blocks

Page: 41 of 63

Dissemination: PU Version: Version 1.0 Status: Final

In conclusion, TLSA resource records bind certificates to protocols and ports and give the
maintainer the chance to select the certificate verification path to verify the pinned certificate.

7.3.2 SMIMEA
The TLSA mechanism is limited to certificates used as part of secured machine-to-machine
communication. Another protocol that uses certificates is secure e-mail via the S/MIME
framework. [21] As part of this framework parts of an e-mail message can be encrypted and
signed. Certificates are used as proof of identity much in the same way that TLS uses them
to prove the identity of a server. Thus, the same issues exist: any CA related to an installed
root certificate can issue certificates for any e-mail address.

Much like TLSA, the SMIMEA mechanism [22] provides a number of ways to limit the
certificates that are acceptable for a certain e-mail address. For this, the e-mail address is
translated into a domain name. It uses a one-way hash function to encode the local part of
the address11 so that the user name cannot be recovered from the domain name, thus
improving privacy. For instance, the address ‹alice@example.com› would be translated into

2bd806c97f0e00af1a1fc3328fa763a9269723c8db8fac4f93af71db._smimecert.exam
ple.com

The SMIMEA records stored under the resulting domain name have the exact same resource
record format as TLSA and provide the exact same information. A certificate used when
sending secure e-mail message from that address must verify with using the information
given in the records.

7.4 Options for LIGHTest
In LIGHTest, certificates will appear in three different places:

• as part of an electronic transaction whose trustworthiness needs to be verified,
• as part of secure network communication, and
• as part of signatures for trust-related information.

In each of these cases, the certificates are used for verifying data and LIGHTest needs to
provide a way to verify in turn whether the certificates are indeed authorized to be used for
this data.

In principle, DANE provides a solution for exactly this problem using DNS. The TLSA
mechanism has been designed specifically for the second appearance if TLS is used as the
transport protocol for secure network communication. LIGHTest only needs to specify that
such records must be present and all certificates must validate according to the rules
prescribed by the TLSA records.

For the first appearance as part of an electronic transaction, there is mechanism yet. The
record data of either TLSA or SMIME records can be used to deliver the information necessary

11 That is, everything before the @ sign.

Relevant DNSSEC Concepts and
Basic Building Blocks

Document name: Relevant DNSSEC Concepts and Basic Building
Blocks

Page: 42 of 63

Dissemination: PU Version: Version 1.0 Status: Final

for verification – as they are identical, either can be chosen purely on taste. If they are to be
used, a domain name for where these records will be placed needs to be specified and
standardized as part of the LIGHTest project. Similarly, information for verification of
certificates used with trust-related information can be stored in DANE resource records under
a yet to be specified domain name.

Relevant DNSSEC Concepts and
Basic Building Blocks

Document name: Relevant DNSSEC Concepts and Basic Building
Blocks

Page: 43 of 63

Dissemination: PU Version: Version 1.0 Status: Final

8. Indicating Resource Locations

One of the conclusions in chapter 5 was that the DNS isn’t suited for data sets that consist of
large individual entries. The data published as part of the LIGHTest infrastructure for trust
discovery and verification, trust translation, and trust delegation is exactly such data. This
chapter will explore the suggestion given in chapter 5 to employ other protocols for access to
the data and only store pointers in DNS. It will start by introducing URIs as the preferred
format for these pointers and will then outline two existing solutions for placing such URIs in
DNS, concluding with a recommendation for the LIGHTest architecture.

8.1 Uniform Resource Identifiers
Pointers to other resources are an intrinsic part of hypertext systems where references to
other resources are included in the text and can be followed interactively. The format of
these pointers used in what came to be known as the World Wide Web eventually developed
into the standard format used by many Internet protocols. It has been given the name
Uniform Resource Identifiers or URIs. [23]

As the name suggests, a URI is first an identifier for a resource, a term used very generically.
This may be something that can be retrieved and displayed by a hypertext system, it may be
a mailbox for electronic communication, or even a real-world object that cannot be accessed
via any electronic means at all. In order to categorize resources, a URI always starts with a
scheme. The remainder of the URI can only be interpreted in the context of this scheme. It
also defines which operations are meaningful for this particular resource.

As is appropriate for a hypertext system, a large number of schemes allow the location and
retrieval of a document over the network. Often, the scheme defines the transport protocol to
use for retrieval and the remainder of the URI contains parameters used by that protocol. For
instance, in the URI

https://www.example.com/index.html

the scheme ‘https’ states that the transport protocol HTTP with TLS encryption is to be used,
that the domain name of the server is ‹www.example.com›, and that this server should be
asked for a document ‘/index.html’.

This kind of URI is ideal as a pointer to a resource to be stored in a resource record in DNS.
Once a client has retrieved the record, it has all the information necessary in order to
proceed with retrieving the information. A great advantage of using URIs is that the
architecture is future proof: If a new transport protocol comes along and proves more
adequate, it merely needs to define an associated URI scheme in order to be used, requiring
no changes to the discovery architecture at all.

A drawback is that a URI of a scheme that does not allow direct retrieval could be stored in
such a record, too. For instance, it is possible to encode International Standard Book
Numbers (ISBNs) as URIs. Naturally, such a URI is of limited use to an automatic trust
validator, which will have to treat a record with such a URI as inexistent.

Relevant DNSSEC Concepts and
Basic Building Blocks

Document name: Relevant DNSSEC Concepts and Basic Building
Blocks

Page: 44 of 63

Dissemination: PU Version: Version 1.0 Status: Final

8.2 NAPTR and DDDS
Even though a URI containing an ISBN number doesn’t (necessarily) represent a network
accessible object, it would still be useful for a hypertext system to be able to retrieve and
show some information for the book represented by that number. RFC 2168 [24] explores
how to make this possible using the DNS. It does so by defining a new resource record type
called NAPTR, short for Naming Authority Pointer, that is repeatedly applied to an identifier
until eventually enough information has been gathered to retrieve a resource.

Subsequent work [25] has generalized the idea into a more general framework called the
Dynamic Delegation Discovery System, DDDS. Instead of only rewriting URIs with rules
stored in DNS, it allows transforming application-specific string by recursively applying
rewrite rules stored in some database. DNS is one of these databases – it has remained the
only one defined so far – and URI resolution is but one application.

Another application is ENUM [26], a system for translating telephone numbers into various
kinds of URIs, such as URIs for the Session Initiation Protocol (SIP) that can be used to
route a phone call via the Internet. Since the purpose of ENUM is somewhat similar to what
will likely be required for LIGHTest – simple translation of a string into a URI –, the following
introduces the function of DDDS using it as an example.

Each application starts out with a string it wishes to transform with DDDS. In ENUM, this
string is a telephone number in international format starting with the international country
code. These numbers are also known as E.164 numbers as they are agreed upon based in
ITU-T regulation E.164. [27] An example for such a number is +35320910846212. This string
needs to be converted into a key that can be used to query the database for an initial set of
rewrite rules. This is called the first well known rule since it provides the start of the process.

Since ENUM only uses the DNS database and the key for DNS is a domain name, the
telephone number needs to be converted into a domain name. This happens by starting with
the domain name ‹e164.arpa› and then taking each of the digits of the number (disregarding
the leading plus) and prefixing it as a new label to the domain name. This will make the
phone number appear backwards and with dots between each digit:
‹2.6.4.8.0.1.9.0.2.3.5.3.e164.arpa›. Because telephone numbers are hierarchical identifiers
like domain names, this approach allows to arrange DNS zone splits along the lines of
ownership over telephone number blocks.

The resulting domain name is now queried for NAPTR records. In the example, the answer
could contain three such records and their data portion could be this:

; order pref flags services substitute
 10 10 "u" "E2U+sip" "!^\\+(.*)$!sip:\\1@example.com!"
 10 11 "u" "E2U+email:mailto" "!^.*$!mailto:info@example.com!"

12 When printing phone numbers for human consumption, spaces, hyphens, or other symbols are
often added to make reading easier. The canonical form of an E.164 number removes all these
symbols but retains the leading plus.

Relevant DNSSEC Concepts and
Basic Building Blocks

Document name: Relevant DNSSEC Concepts and Basic Building
Blocks

Page: 45 of 63

Dissemination: PU Version: Version 1.0 Status: Final

 10 12 "u" "E2U+ifax:mailto" "!^.*$!mailto:fax@example.com!"

The record data is rather complex, consisting of five fields. For orientation, the first line adds
a comment showing the names of each of these fields.

The output of the database query is an ordered list of rules. Since DNS doesn’t have an
implied order of the resource records, the first field, order, is used to allow this ordering. All
records with the same order value are part of the same rule, smaller order values come first.
Rules are visited one after another in order, the first applicable rule is used. In the example,
the order is 10 for each record, so there is only one rule with three entries.

Each entry describes one possible substitution of the original string. The services field
supplies a description of the result of the rewrite. It is an application specific string. The prefix
‘E2U+’ indicates rules for ENUM (short for ‘E.164 to URI’), the remainder describes the
service within ENUM. In the first element ‘sip’ indicates voice calls using the SIP protocol.
Thus, this entry is intended to translate the telephone number into a SIP URI. In the second
entry, ‘email:mailto’ declares it to be for electronic mail with the target URI using the ‘mailto’
scheme used for regular Internet electronic mail. The last entry also uses a ‘mailto’ target
URI but data sent should conform to the ‘facsimile using internet mail’ (IFAX, [28]) service
which provides a way to send a fax via e-mail.

The three entries are ordered within the rule via the preference value (abbreviated as ‘pref’
above). Through this ordering, the operator can express which services they would prefer to
be used. Here, they would prefer someone to call, if that isn’t an option, sent an email, and if
that isn’t an option either, sent a fax via e-mail. If none of these are an option, the rule cannot
be used and processing happens with the next rule, if there is any left, or fails.

If one of the services is acceptable, the original string is transformed into an output value
using the last field, the substituting expression. This kind of expression is inspired by how the
Unix tool ‘sed’ performs text substitution. It consists of two parts: a regular expression that is
applied to the original string and resulting in a number of matches, and a replacement
expression that constructs the output from these matches.

An introduction to regular expressions and replacement expression is well beyond the scope
of this document. Books have been written on the matter, to which the interested reader is
referred [29]. In the first entry above, the regular expression produces a match for the
telephone number without the leading plus and the replacement expression takes this match
as the local part of a SIP URI in the ‹example.com› domain. The other two entries simply
match the whole telephone number but produce fixed e-mail addresses independent from the
input.

There’s but one field left: flags. Its purpose is to dictate what to do with the output string. The
values, too, are application defined, but there are two general possibilities. Either the process
is finished and the output of the replacement expression is considered the final, or terminal,
output, or the output is used as the database key (i.e., domain name for the DNS database)
for yet another round of queries and rule application. This allows a multi-step approach for
translating strings where the database entries for each step are owned by different entities.

Relevant DNSSEC Concepts and
Basic Building Blocks

Document name: Relevant DNSSEC Concepts and Basic Building
Blocks

Page: 46 of 63

Dissemination: PU Version: Version 1.0 Status: Final

In ENUM, there is no need for this recursive processing. Instead the flag will always be ‘u’
declaring that the output is a URI that is the final output of the ENUM lookup.

There are a number of additional details in the specification making DDDS a rather complex
system. Which may be the reason why it hasn’t found widespread use in other systems.
Even ENUM hasn’t found the hoped for adoption, although it can be debated whether
technical or political complexities are the main culprit. On the technical side, an issue that
has often been mentioned is the use of regular expression and the difficulty to both craft
them and understand existing ones.

8.3 The URI Resource Record
A look through the list of defined resource record types will reveal an entry for a URI resource
record type defined in RFC 7553 [30]. The record data of this type is much simpler than that
of the NAPTR record. It only contains a priority, a weight, and a target URI. The priority is
similar to NAPTR’s order field: if there is more than one record, the one with the smallest
priority is to be considered first with other records only there as a backup if the operation with
the result from the first one fails. The weight fields allows load balancing. If multiple records
with the same priority exist, the records are weighted by this field and then one is chosen
randomly.

The actual purpose of the URI record is similar to that of the SRV record introduced briefly in
section 5.10 in that allows to discover who will provide a certain network service for a
domain. Like it, underscore prefix labels are used to state the service and transport protocol
in question. The difference is that where the SRV record shows the host names of the
servers, the URI record allows a redirection to a different URI. For instance, when asking for
the HTTP service for ‹example.com›, this could be the result:

;; ANSWER SECTION:
_http._tcp.example.com. 86400 IN URI (
 10 10 https://www.example.com/about/
)

Since there is only record, priority and weight, both 10 here, don’t really matter. The URI
given is to be used as the base URI for any request for HTTP service in ‹example.com›.

This isn’t really what the LIGHTest project needs. However, this particular use is tied to those
specific prefix labels. The record type itself, which is quite convenient, can easily be used
with a different prefix label as part of a new specification for a revised usage.

8.4 Options for LIGHTest
The two options, NAPTR and URI, both provide a way to convert a domain name into a URI.
While the URI method has a significantly simpler format and procedure, NAPTR has the
advantage of providing additional input besides the domain name. This could for instance be
important to fulfill the privacy requirements of the project. As an example, in the case of trust
publications, the extra input can be the trust issuer to be checked for membership in a trust
scheme. Using this input, a substitution expression can include the issuer name into the
produced URI which can, in turn, be used by the HTTP server of the trust publication

Relevant DNSSEC Concepts and
Basic Building Blocks

Document name: Relevant DNSSEC Concepts and Basic Building
Blocks

Page: 47 of 63

Dissemination: PU Version: Version 1.0 Status: Final

authority to generate a trust list that only contains that issuer and does not reveal the other
members.

Both methods require a certain amount of standardization work. For the NAPTR route, a new
DDDS application would need to be defined. For the URI option, a specification would need to
be created detailing the new use of the resource record and registering the new prefix labels.
Both would require liaising with IETF as the accepted standards body for DNS.

Relevant DNSSEC Concepts and
Basic Building Blocks

Document name: Relevant DNSSEC Concepts and Basic Building
Blocks

Page: 48 of 63

Dissemination: PU Version: Version 1.0 Status: Final

9. DNS Software

This chapter gives a market overview of existing DNS software. Thereby, it is distinguished
between DNS server software (see section 9.1), DNS update libraries (see section 9.2), and
verifying resolver libraries (see section 9.3). Due to the fact that there are numerous software
products available, certain criteria were defined which are relevant for the LIGHTest
infrastructure. These are

• Supported Platforms
• Supported Languages
• License
• Security Extensions

These criteria were applied for the market study. In section 9.4, DNS software and library
options for the LIGHTest infrastructure are presented.

9.1 Server Software
The results of the market study for DNS server software are summarized in alphabetic order
in Table 1. In addition, a short description of the software products is given in alphabetic
order in the following. The information are taken from the corresponding websites listed in
Table 1 and the links provided in these websites.

BIND (Berkeley Internet Name Domain) is the most widely used Name Server and is de facto
the standard DNS server. It enables publishing DNS information on the Internet, as well as
resolving DNS queries. It is a free software product, supports DNSSEC, and runs on most
Unix and Linux and some Windows platforms.

Dnsmasq is a lightweight product, which provides DNS services for small networks. It
includes a local DNS server for the network, with forwarding of all query types to upstream
recursive DNS servers and cacheing of resource records. Modern internet standards such as
IPv6, DNSKEY and DNSSEC are supported.

DNRD (Domain Name Relay Daemon) is a caching, forwarding DNS proxy server. It is most
useful on vpn or dialup firewalls, but it can also be used as a DNS cache for minor networks.

gdnsd is an authoritative-only DNS server. It does geographic balancing, redirection,
weighting, and service-state-conscious failover at the DNS layer. Its focus is on high
performance and low latency service.

Knot DNS is a high-performance authoritative-only DNS server. It scales well on symmetric
multiprocessing systems and enables nonstop operations. DNSSEC with NSCEC and
NSEC2 is supported.

Relevant DNSSEC Concepts and
Basic Building Blocks

Document name: Relevant DNSSEC Concepts and Basic Building
Blocks

Page: 49 of 63

Dissemination: PU Version: Version 1.0 Status: Final

MaraDNS is a small, open-source DNS server. It is lightweight and easy to set up and cross-
platform applicable.

The Microsoft Windows Server 2012 R2 provides several enhancements in the DNS
Server functionality and the software supports authoritative, recursive and hybrid mode. This
includes enhanced DNS logging and diagnostics, full DNSSEC support, and dynamic DNS
forwarders.

Nominum provides a commercial authoritative (Vantio AuthServe) and a cache server
(Vantio CacheServe). Vantio AuthServe uses dual master servers, and an automated
DNSSEC lifecycle management. Vantio CacheServe provides effective and efficient in-
browser communications using their N2 DNS-based platform and purpose-built application
suite.

NSD (Name Server Daemon) from NLNET is an authoritative name server. It is a high
performance, RCF compliant, simple and open source name server. The latest current stable
release is NSD 4.1.16. DNSSEC is supported.

NxFilter is basically a forwarding DNS server with filtering and caching ability. It can be also
used as an authoritative DNS server. NxFilter supports dynamic DNS service.

OpenDNSSEC is a policy-based zone signer to automate keeping track of DNSSEC keys
and the signing of zones. OpenDNSSEC takes in unsigned zones, adds digital signatures
and other records for DNSSEC. It secures zone data just before it is published in an
authoritative name server. OpenDNSSEC is maintained by NLNET.

pdnsd is a caching DNS server with permanent caching to hard disk for long term retention.
It is designed to cope with unreachable or down DNS servers. DNSSEC and EDNS are
supported.

Posadis is a powerful authoritative and caching DNS server which runs on many operating
systems. In addition, a graphical editor for DNS master files, a graphical DNS query tool as
well as library for developing client and server applications are provided.

PowerDNS is an open source authoritative and recursive DNS server, which supports
DNSSEC. In addition, debugging tools and an API to provision zones and recursive server
are provided.

Secure64 provides a commercial authoritative (Secure64 DNS Authority) and a cache
server (Secure64 DNS Cache). Secure64 DNS Authority is a DNS authoritative server that
has been designed from the ground up with a secure architecture. No BIND code is shared.
Secure64 DNS Cache is a scalable, secure caching DNS server, which is also not based on
BIND and it can be configured to validate DNSSEC signed answers.

Relevant DNSSEC Concepts and
Basic Building Blocks

Document name: Relevant DNSSEC Concepts and Basic Building
Blocks

Page: 50 of 63

Dissemination: PU Version: Version 1.0 Status: Final

Simple DNS Plus is a commercial authoritative and recursive DNS server software product
for Windows.

Unbound from NLNET is a recursive, and caching DNS resolver. It is designed in a modular
approach which easily enables DNSSEC validation and stub-resolvers.

YADIFA (Yet Another DNS Implementation For All) is an open-source authoritative Name
Server with DNSSEC capabilities. It runs on multiple platforms. It has a simple configuration
syntax and is very efficient in terms of memory and speed.

Relevant DNSSEC Concepts and
Basic Building Blocks

Document name: Relevant DNSSEC Concepts and Basic Building
Blocks

Page: 51 of 63

Dissemination: PU Version: Version 1.0 Status: Final

Table 1: Market overview DNS Server Software

Name Server Type

Platforms Language License

Security
Extensions

Link

BIND Authoritative,
Recursive

Linux,
MacOS,
Windows

C, C++,
Python

MPL DNSSEC https://www.isc.org/downloads/bind/

Dnsmasq Authoritative Linux,
MacOS

C GPL DNSSEC,
DNSKEY

http://www.thekelleys.org.uk/dnsmasq/doc
.html

DNRD Recursive Linux C GPL http://dnrd.sourceforge.net/

gdnsd Authoritative Linux,
MacOS

C GPL http://gdnsd.org/

Knot DNS Authoritative Linux,
MacOS

C GPL DNSSEC,
NSEC3

https://www.knot-dns.cz/

MaraDNS Authoritative,
Recursive

Linux,
MacOS

C BSD http://maradns.samiam.org/

Microsoft DNS Authoritative,
Recursive

Windows Commercial DNSSEC,
NSEC3

https://technet.microsoft.com/de-
de/library/cc730921(v=ws.11).aspx

Nominum
Vantio
CacheServe

Recursive Linux Commercial DNSSEC http://www.nominum.com/product/caching
-dns/

Nominum
Vantio
AuthServe

Authoritative Linux Commercial DNSSEC http://www.nominum.com/product/vantio-
authserve/

https://www.isc.org/downloads/bind/
http://www.thekelleys.org.uk/dnsmasq/doc.html
http://www.thekelleys.org.uk/dnsmasq/doc.html
http://dnrd.sourceforge.net/
http://gdnsd.org/
https://www.knot-dns.cz/
http://maradns.samiam.org/
http://www.nominum.com/product/caching-dns/
http://www.nominum.com/product/caching-dns/
http://www.nominum.com/product/vantio-authserve/
http://www.nominum.com/product/vantio-authserve/

Relevant DNSSEC Concepts and
Basic Building Blocks

Document name: Relevant DNSSEC Concepts and Basic Building
Blocks

Page: 52 of 63

Dissemination: PU Version: Version 1.0 Status: Final

NSD Authoritative Linux,
MacOS

C BSD DNSSEC https://www.nlnetlabs.nl/projects/nsd/

NxFilter Recursive Windows Individual http://nxfilter.org/p3/

OpenDNSSEC Zone Signer Linux,
MacOS,
Windows

C,C++ BSD DNSSEC https://www.opendnssec.org/

pdnsd Recursive Linux,
MacOS

C GPL DNSSEC, http://members.home.nl/p.a.rombouts/pdn
sd

Posadis Authoritative,
Recursive

Linux,
MacOS,
Windows

C++ GPL http://posadis.sourceforge.net/

PowerDNS Authoritative,
Recursive

Linux GPL DNSSEC https://www.powerdns.com/index.html

Secure64 DNS
Authority

Authoritative Linux Commercial DNSSEC https://secure64.com/dns-
products/secure64-authoritative-dns/

Secure64 DNS
Cache

Recursive Linux Commercial DNSSEC https://secure64.com/dns-
products/dns_caching_server/

Simple DNS
Plus

Authoritative,
Recursive

Windows Commercial DNSSEC http://simpledns.com/

Unbound Recursive Linux,
MacOS,
Windows

C BSD DNSSEC https://unbound.net/

YADIFA Authoritative Linux,
MacOS

C BSD DNSSEC,
NSEC3

http://www.yadifa.eu/

https://www.nlnetlabs.nl/projects/nsd/
http://nxfilter.org/p3/
https://www.opendnssec.org/
http://members.home.nl/p.a.rombouts/pdnsd
http://members.home.nl/p.a.rombouts/pdnsd
http://posadis.sourceforge.net/
https://www.powerdns.com/index.html
https://secure64.com/dns-products/secure64-authoritative-dns/
https://secure64.com/dns-products/secure64-authoritative-dns/
https://secure64.com/dns-products/dns_caching_server/
https://secure64.com/dns-products/dns_caching_server/
http://simpledns.com/
https://unbound.net/
http://www.yadifa.eu/

Relevant DNSSEC Concepts and
Basic Building Blocks

Document name: Relevant DNSSEC Concepts and Basic Building
Blocks

Page: 53 of 63

Dissemination: PU Version: Version 1.0 Status: Final

9.2 DNS update libraries
The results of the market study for DNS update libraries are summarized in alphabetic order
in Table 2. In addition, a short description of the products is given in alphabetic order in the
following. The information are taken from the corresponding websites listed in Table 2 and
the links provided in these websites.

DDClient is Perl client which is used to update dynamic DNS entries. The client runs on
Unix, Linux and Max OS X systems.

dDNS Broker (formerly IP Monitor) is a dynamic DNS update client for Mac OS X. It works
with more than 40 dynamic DNS service providers.

DirectUpdate is a client updater that runs automatically and transparently in the background.
It is designed for Windows systems and supports many different dynamic DNS providers.

DynSite is an automatic IP updater developed for Windows systems. Dynamic DNS services
are supported.

ez-ipupdate is a dynamic DNS client, which supports several dynamic DNS protocols and
which includes daemon support.

FreeDNS Update from Afraid.org is a free client software for dynamic DNS, static DNS
subdomain and domain hosting. It is developed for Windows systems using the
Microsoft.NET Framework 4 technology.

inadyn is a dynamic DNS clients from inatech. There are several forks from the original
inadyn, e.g inadyn-mt, which run on multiple platforms.

Java Dynamic DNS Client is a dynamic DNS client, which runs as application or daemon. It
is platform independent and requires only that java is enabled.

NC DNS Updater for Mac OS X automatically updates IPs for namecheap’s dynamic DNS
Service. NC DNS Updater runs as a daemon and does not require a logged in user to
function.

Relevant DNSSEC Concepts and
Basic Building Blocks

Document name: Relevant DNSSEC Concepts and Basic Building
Blocks

Page: 54 of 63

Dissemination: PU Version: Version 1.0 Status: Final

Table 2: Market overview DNS update libraries

Name Platforms
(Linux, MacOS,
Windows)

Language PublicSource Code Link

DDClient Unix-like Perl GPL https://sourceforge.net/p/ddclient/wiki/Home/

dDNS Broker Mac OS X Commercial https://itunes.apple.com/de/app/ddns-broker-formerly-ip-
monitor/id1050307950?mt=12&ign-mpt=uo%3D4

Direct Update Windows Commercial http://www.directupdate.net/

DynSite for
Windows

Windows multilinguale Commercial http://noeld.com/dynsite.asp

ez-ipupdate Linux C GPL https://sourceforge.net/projects/ez-ipupdate/

FreeDNS
Update

Windows C# GPL http://www.nesociety.org/community-services/afraid-updater-service-
4/

Inadyn Linux, Windows,
Mac OS X,
OpenBSD

C GPL https://sourceforge.net/projects/inadyn-mt/files/

IvmaiDNS Linux, Windows,
Solaris

Java GPL http://ivmaidns.sourceforge.net/

Java Dynamic
DNS Client

Cross-platform Java LGPL http://rzodyndns.sourceforge.net/

https://sourceforge.net/p/ddclient/wiki/Home/
https://itunes.apple.com/de/app/ddns-broker-formerly-ip-monitor/id1050307950?mt=12&ign-mpt=uo%3D4
https://itunes.apple.com/de/app/ddns-broker-formerly-ip-monitor/id1050307950?mt=12&ign-mpt=uo%3D4
http://www.directupdate.net/
http://noeld.com/dynsite.asp
https://sourceforge.net/projects/ez-ipupdate/
http://www.nesociety.org/community-services/afraid-updater-service-4/
http://www.nesociety.org/community-services/afraid-updater-service-4/
https://sourceforge.net/projects/inadyn-mt/files/
http://ivmaidns.sourceforge.net/
http://rzodyndns.sourceforge.net/

Relevant DNSSEC Concepts and
Basic Building Blocks

Document name: Relevant DNSSEC Concepts and Basic Building
Blocks

Page: 55 of 63

Dissemination: PU Version: Version 1.0 Status: Final

NC DNS
Updater

Mac OS X Freeware https://github.com/aidanamavi/nc-dns-updater

https://github.com/aidanamavi/nc-dns-updater

Relevant DNSSEC Concepts and
Basic Building Blocks

Document name: Relevant DNSSEC Concepts and Basic Building
Blocks

Page: 56 of 63

Dissemination: PU Version: Version 1.0 Status: Final

9.3 Verifying resolver libraries
The results of the market study for verifying resolver libraries are summarized in alphabetic
order in Table 3. In addition, a short description of the products is given in alphabetic order in
the following. The information are taken from the corresponding websites listed in Table
2Table 3 and the links provided in these websites.

dnsjava is an implementation of DNS in Java for DNS queries but also for zone transfers
and dynamic updates. All record types are supported, including DNSSEC.

getdns is an asynchronous DNS API written in C. It makes all types of DNS (inclusive
DNSSEC) information easily available and enables end-to-end trust in the DNS architecture.

IvmaiDNS is a java DNS client implementation, which consists of a java library and utilities
for looking up internet domain names.

Relevant DNSSEC Concepts and
Basic Building Blocks

Document name: Relevant DNSSEC Concepts and Basic Building
Blocks

Page: 57 of 63

Dissemination: PU Version: Version 1.0 Status: Final

Table 3: Market overview DNS resolver libraries

Name Platforms
(Linux, MacOS,
Windows)

Language PublicSource Code Link

dnsjava Cross-Platform Java BSD http://www.xbill.org/dnsjava/

getDNS Linux, Windows,
Mac OS X

C BSD-new https://getdnsapi.net/

IvmaiDNS Linux, Windows,
Solaris

Java GPL http://ivmaidns.sourceforge.net/

http://www.xbill.org/dnsjava/
https://getdnsapi.net/
http://ivmaidns.sourceforge.net/

Relevant DNSSEC Concepts and
Basic Building Blocks

Document name: Relevant DNSSEC Concepts and Basic Building
Blocks

Page: 58 of 63

Dissemination: PU Version: Version 1.0 Status: Final

9.4 Options for LIGHTest

The software overview enables a selection of suitable products for building the LIGHTest
reference infrastructure and pilots. According to the objectives of LIGHTest, main criteria for
the selection are the following:

• Multi-Platform use,
• BSD or Apache license,
• support of DNSEC extensions.

As both the provisioning software and the trust verifier are intended to be written in Java, the
client libraries need to be for that language.
According to the criteria, the following products are suited to be implemented in the LIGHTest
infrastructure by the time of writing. The final selection of the implemented components will
be made in the corresponding tasks of the work packages 3, 4, 5, and 6.

For the server software used in the reference infrastructure, the combination of NSD,
OpenDNSSEC, and Unbound is well suited. As all of these are products maintained by
NLNET, experience with deployment and configuration is readily available as well as any
additional support should it become necessary.

For the update libraries either lvmaiDNS or the Java Dynamic DNS Client can be used,
depending on the eventual design of the provisioning software.

For the verifying resolver libraries, dnsjava is well suited.

Relevant DNSSEC Concepts and
Basic Building Blocks

Document name: Relevant DNSSEC Concepts and Basic Building
Blocks

Page: 59 of 63

Dissemination: PU Version: Version 1.0 Status: Final

10. Conclusion and Outlook

During its look into the Domain Name System, the deliverable has shown that the system is
well suited as the foundation for a trust infrastructure for the Internet, provided the design of
the infrastructure takes into account some limitations deriving from the design of the DNS
itself.

In particular, the deliverable has shown why the DNS should not be used to publish trust-
related information itself but rather use the system only to publish the location of such
information. The public nature of the DNS and its lack of any mechanism to limit access to
information to authenticated users needs to be considered where sensitive information is
involved.

The mechanism to verify the DNS data provided by DNSSEC introduce a high amount of
confidence into the authenticity of that data as needed when using this information to verify
whether an electronic transaction can or should be trusted.

The deliverable looked at a number of concrete options to include the data to be stored in the
DNS as part of LIGHTest. While it found that likely none of the existing extensions can be
used as they are, it is likely that they only need small procedural modifications.

The task 3.2, 4.2, and 5.2 will more closely look into how these options apply to the
LIGHTest architecture and which concrete modifications will be necessary.

Relevant DNSSEC Concepts and
Basic Building Blocks

Document name: Relevant DNSSEC Concepts and Basic Building
Blocks

Page: 60 of 63

Dissemination: PU Version: Version 1.0 Status: Final

11. References

[1] P.V. Mockapetris. Domain names: Concepts and facilities. RFC 882, Internet
Engineering Task Force, November 1983.

[2] P.V. Mockapetris. Domain names: Implementation specification. RFC 883, Internet
Engineering Task Force, November 1983.

[3] P.V. Mockapetris. Domain names – concepts and facilities. RFC 1034, Internet
Engineering Task Force, November 1987.

[4] P.V. Mockapetris. Domain names – implementation and specification. RFC 1035,
Internet Engineering Task Force, November 1987.

[5] J. Postel. Domain Name System Structure and Delegation. RFC 1591, Internet
Engineering Task Force, March 1994.

[6] A. Gustafssonn. Handling of Unknown Resource Record (RR) Types. RFC 3597,
Internet Engineering Task Force, September 2003.

[7] P. Vixie, S. Thomson, Y. Rekhter, J. Bound. Dynamic Updates in the Domain Name
System (DNS UPDATE). RFC 2136, Internet Engineering Task Force, April 1997.

[8] J. Dickinson, S. Dickinson, R. Bellis, A. Mankin, D. Wessels. DNS Transport over
TCP – Implementation Requirements. RFC 7766, Internet Engineering Task Force,
March 2016.

[9] D. Atkins and R. Austein. Threat Analysis of the Domain Name System (DNS). RFC
3833, Internet Engineering Task Force, August 2004.

[10] ICANN Security and Stability Advisory Committee (SSAC). Domain Name Hijacking:
Incidents, Threats, Risks, and Remedial Actions. ICANN, July 2005.
https://archive.icann.org/en/announcements/hijacking-report-12jul05.pdf

[11] National Cybersecurity and Communications Integrity Center. DDoS Quick Guide.
January 2014. https://www.us-
cert.gov/sites/default/files/publications/DDoS%20Quick%20Guide.pdf

[12] R. Gieben, W. Mekking. Authenticated Denial of Existence in the DNS. RFC 7129,
Internet Engineering Task Force, February 2014.

[13] Z. Hu, L. Zhu, J. Heidemann, A. Mankin, D. Wessels, P. Hoffman. Specification for
DNS over Transport Layer Security (TLS). RFC 8757, Internet Engineering Task
Force, May 2016.

[14] T. Reddy, D. Wing. DNS over Datagram Transport Layer Security (DTLS). RFC
8094, Internet Engineering Task Force, February 2017.

[15] Mozilla CA Certificate Store. https://www.mozilla.org/en-
US/about/governance/policies/security-group/certs/.

[16] D. Eastlake, O. Gudmundsson. Storing Certificates in the Domain Name System
(DNS). RFC 2538, Internet Engineering Task Force, March 1999. Obsoleted and
replaced by: S. Josefsson. Storing Certificates in the Domain Name System (DNS).
RFC 4398, Internet Engineering Task Force, March 2006.

[17] J. Schlyter, W. Griffin. Using DNS to Securely Publish Secure Shell (SSH) Key
Fingerprints. RFC 4255, Internet Engineering Task Force, January 2006.

[18] M. Richardson. A Method for Storing IPsec Keying Material in DNS. RFC 4025,
Internet Engineering Task Force, February 2005.

https://archive.icann.org/en/announcements/hijacking-report-12jul05.pdf
https://www.us-cert.gov/sites/default/files/publications/DDoS%20Quick%20Guide.pdf
https://www.us-cert.gov/sites/default/files/publications/DDoS%20Quick%20Guide.pdf
https://www.mozilla.org/en-US/about/governance/policies/security-group/certs/
https://www.mozilla.org/en-US/about/governance/policies/security-group/certs/

Relevant DNSSEC Concepts and
Basic Building Blocks

Document name: Relevant DNSSEC Concepts and Basic Building
Blocks

Page: 61 of 63

Dissemination: PU Version: Version 1.0 Status: Final

[19] P. Hoffman, J. Schlyter. The DNS-Based Authentication of Name Entities (DANE)
Transport Layer Security (TLS) Protocol: TLSA. RFC 6698, Internet Engineering
Task Force, August 2012.

[20] O. Gudmundsson. Adding Acronyms to Simplify Conversations about DNS-based
Authentication of Named Entities (DANE). RFC 7218, Internet Engineering Task
Force, April 2014.

[21] B. Ramsdell, S. Turner. Secure/Multipurpose Internet Mail Extensions (S/MIME)
Version 3.2 Message Specification. RFC 5751, Internet Engineering Task Force,
January 2010.

[22] P. Hoffman, J. Schlyter. Using Secure DNS to Associate Certificates with Domain
Names for S/MIME. RFC 8162, Internet Engineering Task Force, May 2017.

[23] T. Berners-Lee, R. Fielding, L. Masinter. Uniform Resource Identifier (URI): Generic
Syntax. RFC 3986, Internet Engineering Task Force, January 2005.

[24] R. Daniel, M. Mealling. Resolution of Uniform Resource Identifiers using the Domain
Name System. RFC 2168, Internet Engineering Task Force, June 1997.

[25] M. Mealling. Dynamic Delegation Discovery System (DDDS) Part One: The
Comprehensive DDDS. RFC 3401, Internet Engineering Task Force, October 2002.

[26] S. Bradner, L. Conroy, K. Fujiwara. The E.164 to Uniform Resource Identifiers (URI)
Dynamic Delegation Discovery System (DDDS) Application (ENUM). RFC 6116,
Internet Engineering Task Force, March 2011.

[27] International Telecommunication Union. The International Public
Telecommunication Numbering Plan. Recommendation ITU-T E.164, Edition 6.0,
November 2010.

[28] R. Buckley, D. Venable, L. McIntyre, G. Parsons, J. Rafferty. File Format for Internet
Fax. RFC 3949, Internet Engineering Task Force, February 2005.

[29] Jeffrey Friedl. Mastering Regular Expressions. 3rd edition, O’Reilly Media, August
2006.

[30] P. Falstrom, O. Kolkman. The Uniform Resource Identifier (URI) DNS Resource
Record. RFC 7553, Internet Engineering Task Force, June 2015.

[31] Robert Charetter. DigiNotar Certificate Authority Breach Crashes e-Government in
the Netherlands. IEEE Spectrum Online, September 2011.
http://spectrum.ieee.org/riskfactor/telecom/security/diginotar-certificate-authority-
breach-crashes-egovernment-in-the-netherlands

http://spectrum.ieee.org/riskfactor/telecom/security/diginotar-certificate-authority-breach-crashes-egovernment-in-the-netherlands
http://spectrum.ieee.org/riskfactor/telecom/security/diginotar-certificate-authority-breach-crashes-egovernment-in-the-netherlands

Relevant DNSSEC Concepts and
Basic Building Blocks

Document name: Relevant DNSSEC Concepts and Basic Building
Blocks

Page: 62 of 63

Dissemination: PU Version: Version 1.0 Status: Final

12. Project Description

LIGHTest project to build a global trust infrastructure that enables electronic
transactions in a wide variety of applications

An ever increasing number of transactions are conducted virtually over the Internet. How can
you be sure that the person making the transaction is who they say they are? The EU-funded
project LIGHTest addresses this issue by creating a global trust infrastructure. It will provide
a solution that allows one to distinguish legitimate identities from frauds. This is key in being
able to bring an efficiency of electronic transactions to a wide application field ranging from
simple verification of electronic signatures, over eProcurement, eJustice, eHealth, and law
enforcement, up to the verification of trust in sensors and devices in the Internet of Things.

Traditionally, we often knew our business partners personally, which meant that
impersonation and fraud were uncommon. Whether regarding the single European market
place or on a Global scale, there is an increasing amount of electronic transactions that are
becoming a part of peoples everyday lives, where decisions on establishing who is on the
other end of the transaction is important. Clearly, it is necessary to have assistance from
authorities to certify trustworthy electronic identities. This has already been done. For
example, the EC and Member States have legally binding electronic signatures. But how can
we query such authorities in a secure manner? With the current lack of a worldwide standard
for publishing and querying trust information, this would be a prohibitively complex leading to
verifiers having to deal with a high number of formats and protocols.

The EU-funded LIGHTest project attempts to solve this problem by building a global trust
infrastructure where arbitrary authorities can publish their trust information. Setting up a
global infrastructure is an ambitious objective; however, given the already existing
infrastructure, organization, governance and security standards of the Internet Domain Name
System, it is with confidence that this is possible. The EC and Member States can use this to
publish lists of qualified trust services, as business registrars and authorities can in health,
law enforcement and justice. In the private sector, this can be used to establish trust in inter-
banking, international trade, shipping, business reputation and credit rating. Companies,
administrations, and citizens can then use LIGHTest open source software to easily query
this trust information to verify trust in simple signed documents or multi-faceted complex
transactions.

The three-year LIGHTest project starts on September 1st and has an estimated cost of
almost 9 Million Euros. It is partially funded by the European Union’s Horizon 2020 research
and innovation programme under G.A. No. 700321. The LIGHTest consortium consists of 14
partners from 9 European countries and is coordinated by Fraunhofer-Gesellschaft. To reach
out beyond Europe, LIGHTest attempts to build up a global community based on
international standards and open source software.

Relevant DNSSEC Concepts and
Basic Building Blocks

Document name: Relevant DNSSEC Concepts and Basic Building
Blocks

Page: 63 of 63

Dissemination: PU Version: Version 1.0 Status: Final

The partners are ATOS (ES), Time Lex (BE), Technische Universität Graz (AT),EEMA (BE),
G&D (DE), Danmarks tekniske Universitet (DK), TUBITAK (TR), Universität Stuttgart (DE),
Open
Identity Exchange (GB), NLNet Labs (NL), CORREOS (ES), IBM Danmark (DK) and
Globalsign (FI). The Fraunhofer IAO provides the vision and architecture for the project and
is responsible for both, its management and the technical coordination.
The Fraunhofer IAO provides the vision and architecture for the project and is responsible for
both, its management and the technical coordination.

	1. Executive Summary
	2. Document Information
	2.1 Contributors
	2.2 History

	3. Table of Contents
	3.1 Table of Figures
	3.2 Table of Tables
	3.3 Table of Acronyms

	4. Scope
	5. Introduction to the DNS
	5.1 Questions and Answers
	5.2 Domain Names
	5.3 Distributed Authority
	5.4 The Root Zone, TLDs, Registries and Registrars
	5.5 Operation of the DNS
	5.6 Management of Zone Data
	5.7 Querying the DNS
	5.8 Down to the Wire
	5.9 Message Size Limits
	5.10 Extending DNS

	6. DNSSEC
	6.1 Threats to DNS
	6.1.1 Man or Monkey in the Middle (MITM) Attacks
	6.1.2 DNS Spoofing
	6.1.3 Cache poisoning
	6.1.4 Name Chaining
	6.1.5 Hijacking
	6.1.6 Denial of Service (DoS)
	6.1.7 Distributed Denial of Service (DDoS)
	6.1.8 Denial of Existence

	6.2 Digital Signatures for DNS Records
	6.3 A Chain of Keys
	6.4 Operating DNSSEC-aware Zones
	6.5 Verifying DNS Records
	6.6 Limits of DNSSEC

	7. Verifying Identity with DNS
	7.1 The System of Certificate Authorities
	7.2 Storing Certificates in DNS
	7.3 DANE
	7.3.1 TLSA
	7.3.2 SMIMEA

	7.4 Options for LIGHTest

	8. Indicating Resource Locations
	8.1 Uniform Resource Identifiers
	8.2 NAPTR and DDDS
	8.3 The URI Resource Record
	8.4 Options for LIGHTest

	9. DNS Software
	9.1 Server Software
	9.2 DNS update libraries
	9.3 Verifying resolver libraries
	9.4 Options for LIGHTest

	10. Conclusion and Outlook
	11. References
	12. Project Description

